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Context - Sequential decision making
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Markov decision process (MDP) setting

● Finite state space
● Finite action space

● Transition kernel 
● Reward function 
● Discount factor 
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The discounted return

Given a policy                          and initial state     and action                 ,

➔ next state
➔ next action 

❏ Expected value

❏ Bellman equation

❏ Probability distribution

❏ Distributional Bellman equation
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Empirical success of the distributional perspective

● reinforcement learning (RL) learns expectations
● distributional RL learns distributions  

5(illustration from Bellemare et al., 2017)



Remi Munos' concluding slide (from his distributional RL presentation)

...in this talk, we leverage the distributional perspective for risk-sensitive purpose! 6



Our contributions

1) Our approach provides two Q-functions                  and 
2) Simple and efficient dynamic programming (DP) algorithms
3)        and         have a robust MDP interpretation
4) New risk-sensitive control tasks in balanced MDPs + DP algorithms
5) Linear program (LP) for risky control (but not for safe control)

Overall feeling: natural extension of the "non-distributional" framework
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Warm-up: monoatomic case

1. Take distributions with 1 atom: 
2. Apply the distributional Bellman operator        :

(new atomic distribution with up to |X|.|A| times more atoms!!)

3. Project back to a single atom:
a. in Dabney et al. (2018), W1-projection --> median
b. W2-projection --> expectation --> usual policy evaluation update:
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Sketch of our diatomic approach (for policy evaluation)

1. Fix a probability weight: 
2. Take distributions with 2 atoms: 
3. Apply the distributional Bellman operator        :

(new atomic distribution with up to |X|.|A| times more atoms!!)

4. Project back to a distribution with 2 atoms:

in this talk, W2-projection --> average value-at-risk (AVaR) a.k.a CVaR

9



The 2-Wasserstein projection
(summarizing an entire distribution by two scalars)

❏ Key property

 

If atomic distribution, just sum 
(signed) areas of rectangles!
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Update rule: from (Q1,Q2) to next pair (Q'1,Q'2)

For all (x,a), we summarize the following atomic distribution

by 2 atoms, namely its left and right AVaRs:

and

Good news: this can be computed exactly and efficiently!!
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The Sorted Policy Evaluation (SPE) algorithm

❖ Classic policy evaluation: O( |X|2.|A| )
❖ SPE: O( (|X|.|A|)2.log(|X|.|A|) )

➢ if deterministic policy: O( |X|2.|A|.log(|X|) )
➢ if r(x,a,x') = r(x,a): remove the log term!

Time complexity per iteration:

12



Some properties

●                       is piecewise linear concave
●         is piecewise linear convex
● Fixed point: 
● averaging property:
● relative order:

In general, 

...OK, then what do these two Q-functions really mean??
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Main result - Robust MDP interpretation

Consider a deterministic policy and define
    and       .

Theorem: for all states x,

     and        ,

where ●         denotes the value function in an augmented MDP with kernel    

● all infima and suprema are attained at the same kernel
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Splitting each state       into two substates        and   

The "dichotomous uncertainty set" denoted by   
contains all augmented kernels        that are consistent with the original one       :

                (rewards and policies are extended trivially to substates)
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Robust control in balanced MDPs

➔ Example 1: MDP in slide 3, combined with 
➔ Example 2: first solve classic control in some MDP, then remove suboptimal 

actions in each state

(Shocking) Assumption: an MDP is said balanced if all policies are optimal:

for all        , .

By the averaging property, there is a clear tradeoff between safety and risk:

➔ safe policy:    maximize    <==>    minimize
➔ risky policy:    maximize    <==>    minimize
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Safe/Risky Sorted Value Iteration

Safe SVI:

    
where

Risky SVI: just swap min and max

Implementation:   as for SPE, first sort atoms, then "sum areas of rectangles"

Fixed points:   and

Time complexity: ❖ Classic value iteration: O( |X|2.|A| )
❖ Safe/Risky SVI: O( |X|2.|A|.log(|X|) )

➢ if r(x,a,x') = r(x,a): remove log
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Safe/Risky (optimal) actions

● Safest policies: in each state x,

● Riskiest policies: in each state x,
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Toy experiment

Safe control for                 in balanced MDP from slide 3 (with discount factor 0.5).
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Perspectives

1) Beyond atomic distributions
a) piecewise linear CDF --> weighted AVaR

2) Balanced MDPs
a) find a natural class of "balanced MDP" problems
b) relax this assumption

3) LP for risky control
a) Q-REPS style algorithm
b) combine with classic LP

4) distributional RL
a) learn CDF and atoms Q1(x,a),...,QN(x,a), not quantile function!
b) ...by exponential moving average (cf. my thesis)
c) ...or with Cramer loss
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Bonus slide - Atomic Bellman equation with CDF
(for N uniformly weighted atoms Q1,...,QN)

For all (x,a) and atom index 1 ≤ i ≤ N ,

where   ranges over           

with the CDF

and its left limit  

 

22


