
Checkered Regression

Mastane Achab∗

March 7, 2022

This paper introduces the checkered regression model, a nonlinear general-
ization of logistic regression. More precisely, this new binary classifier relies
on the multivariate function 1

2

(
1 + tanh( z12 )× · · · × tanh( zm2 )

)
, which coin-

cides with the usual sigmoid function in the univariate case m = 1. While
the decision boundary of logistic regression consists of a single hyperplane,
our method is shown to tessellate the feature space by any given number
m ≥ 1 of hyperplanes. In order to fit the model’s parameters to some
labeled data, we describe a classic empirical risk minimization framework
based on the cross entropy loss. A multiclass version of our approach is also
proposed.

1 Introduction

Logistic regression (LR) is one of the most standard approaches for binary classification:
it simply learns a linear prediciton rule, through a convex minimization problem in the
case of the cross entropy loss (see e.g. [2], [5]). Nevertheless, it suffers from a lack of
representational power: indeed, it cannot handle nonlinear relations between features
and labels. For that reason, artificial neural networks (a.k.a. deep learning models) are
nowadays preferred over linear methods such as LR across a broad spectrum of machine
learning applications, ranging from image or speech recognition to natural language
processing ([6], [4]). But in general, the optimization of a deep neural network is a
highly non-convex problem for which we still have little theoretical understanding. As
an alternative to deep learning, this paper proposes a new binary classifier that strictly
generalizes LR: we call it the checkered regression (CR) model. Loosely speaking, CR
can be seen as a single hidden-layer neural network with tanh activations that are
multiplied together, instead of being additively combined as is customary. This is
somehow similar to the NALU module proposed in [8] that computes the elementwise
product of tanh and sigmoid activations. Contrary to LR, the scope of CR expands
beyond linear separability. As shall be seen in the next section, the predictions of a
CR model can tile the feature space into a checkerboard-like pattern. The paper is
organized as follows. After defining our model in Section 2, we discuss its optimization
in Section 3. Finally, we illustrate our approach with a basic numerical experiment in
Section 4.
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2 The checkered regression model

This section formally introduces the checkered regression model along with a few
elementary properties. Let m ≥ 1 and 1 = (1, . . . , 1) be the all-ones vector of size m.
We start with the definitions below.

Definition 1. (Checkoid function). The checkoid function Ξm is defined for all
z = (z1, . . . , zm) ∈ Rm by

Ξm(z) =
1

2

(
1 +

m∏
k=1

tanh
(zk

2

))
=

∑
υ∈{0,1}m s.t. 1ᵀυ≡0[2] e

−υᵀz

(1 + e−z1)× · · · × (1 + e−zm)
.

Definition 2. (Checkered regression). Let X ⊆ Rd (d ≥ 1). The checkered
regression model with parameters ω = (ω1, . . . , ωm) ∈ Rdm is given by the posterior
probabilities

pω (0|x) = 1− pω (1|x) = Ξm(ωᵀ
1x, . . . , ω

ᵀ
mx) for all x ∈ X .

For m = 1, Ξ1 = σ is the sigmoid function and the checkered regression is simply a
logistic regression. If m = 2, the checkoid function is also equal to

Ξ2(z1, z2) =
tanh

(
z1
2

)
+ tanh

(
z2
2

)
2 tanh

(
z1+z2

2

) .

For general m ≥ 1, we give next two properties of the checkoid function and CR.

Proposition 1. (Symmetry of Ξm). Let z = (z1, . . . , zm) ∈ Rm, k ∈ {1, . . . ,m} and
z′ = (z′1, . . . , z

′
m) with z′k = −zk and z′j = zj for j 6= k. Then,

Ξm(z′) = 1− Ξm(z).

Proof. By the oddness of the hyperbolic tangent.

Lemma 1. (Hamming distance parity). Consider a checkered regression model
with parameters ω = (ω1, . . . , ωm). Let x and x′ be two points in Rd both outside the m
hyperplanes of the CR model, i.e. such that ωᵀ

kx 6= 0 and ωᵀ
kx
′ 6= 0 for all 1 ≤ k ≤ m.

Then, the two following conditions are equivalent.

(i) The CR model predicts that x and x′ share the same label:

sign

(
pω (0|x)− 1

2

)
= sign

(
pω
(
0|x′

)
− 1

2

)
.

(ii) The Hamming distance

m∑
k=1

I
{

sign
(
ωᵀ
kx
)
6= sign

(
ωᵀ
kx
′)}

is even.

Proof. By successive applications of Proposition 1.
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Figure 1: A checkered hyperplane tessellation of the Euclidean plane.

In the univariate case, Proposition 1 corresponds to the common identity σ(−z) =
1− σ(z) satisfied by the sigmoid. More interestingly, Lemma 1 shows that the decision
regions of a CR model form a hyperplane tessellation of the feature space X , where the
tiles are binary labeled in a checkered fashion.

Multiclass CR We now define a muticlass version of our model that can be used in
classification problems having more than two classes. Let Y = {0, . . . , c− 1} be the set
of classes with c ≥ 3.

Definition 3. (Multiclass checkered regression). The multiclass checkered
regression model with parameters Ω = (Ω1, . . . ,Ωm) ∈ Rdm(c−1) is given by the posterior
probabilities

∀y ∈ Y , pΩ (y|x) = Ξm,y(Ω1x, . . . ,Ωmx) ,

where the multiclass checkoid function Ξm,y is defined for all Z ∈ R(c−1)×m as

Ξm,y(Z) =

∑
υ∈Ym s.t. 1ᵀυ≡y[c] e

−tr(EυZ)(
1 +

∑c−1
j=1 e

−Zj,1
)
× · · · ×

(
1 +

∑c−1
j=1 e

−Zj,m
) ,

where Eυ is the m× (c− 1) matrix such that [Eυ]k,j = I{j = υk} for 1 ≤ k ≤ m, 1 ≤
j ≤ c− 1.

For m = 1, multiclass CR coincides with the well-known multiclass (or ‘softmax’) LR
model. As a remark, the multiclass checkoid functions may as well be expressed through
generalized tanh functions with the c-th roots of unity. For simplicity, we restrict our
attention to binary classification in the remaining of the paper.

3 Optimization

Given a random pair (X,Y ) valued in X×{0, 1} and a collection ((X1, Y1), . . . , (Xn, Yn))
of i.i.d. copies of (X,Y ), we follow the empirical risk minimization paradigm ([3]). In
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other words, we adjust the parameters ω of our CR model to match the true posterior
probabilities

P (Y = 0|X = x) = 1− P (Y = 1|X = x) ,

by minimizing some empirical risk. By analogy with LR, we take the cross entropy
loss:

min
ω
L̂(ω) :=

1

n

n∑
i=1

−Yi log pω(1|Xi)− (1− Yi) log pω(0|Xi) , (1)

which also corresponds to maximum likelihood estimation.

Gradient A tempting way of solving the optimization problem (1) is via stochastic
gradient descent (SGD). At each iteration of SGD, we need to compute the gradient
(with respect to ω) of the loss induced by a single training pair (Xi, Yi). The next result
allows to do this differentiation.

Proposition 2. (Partial derivatives). Consider the logarithmic loss: for all
z = (z1, . . . , zm) ∈ Rm,

`(z) = − log(Ξm(z)) .

Then for any 1 ≤ k ≤ m, the k-th partial derivative of ` is

∂`

∂zk
(z) = σ(zk) ·

(
1− Ξm−1(z−k)

Ξm(z)

)
,

where z−k = (zj)j 6=k .

By combining Propositions 1 and 2, we obtain the partial derivatives of the log-loss
˜̀(z) = − log(1− Ξm(z)) on the other class:

∂ ˜̀

∂zk
(z) = −(1− σ(zk)) ·

(
1− Ξm−1(z−k)

1− Ξm(z)

)
.

In particular, the partial derivatives of ` and ˜̀ are all bounded in the interval (−1, 1).
The next paragraph links our approach to the concept of submodularity.

Submodularity We recall from [1] that a continuous real-valued function H defined
on the product X =

∏m
k=1 Xk of m compact subsets Xk of R is submodular if and

only if for all (z, z′) ∈X 2 such that {z, z′} 6= {min(z, z′),max(z, z′)},

H(z) +H(z′) ≥ H(min(z, z′)) +H(max(z, z′)) , (2)

with component-wise min and max operations. If the inequality is strict in Eq. (2),
then H is strictly submodular. In the case m = 2, the following lemma states that the
logarithmic loss of the checkoid belongs to this class of functions.

Lemma 2. (Strict submodularity). The log-loss `(z1, z2) = − log(Ξ2(z1, z2)) is
strictly submodular.
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Proof. For any 1 ≤ j 6= k ≤ m, the cross-second-order derivative

∂2`

∂zj∂zk
(z) = −σ(zj)(1− σ(zj)) · σ(zk)(1− σ(zk))

Ξm(z)2
·
∏
l 6=j,k

tanh
(zl

2

)
is strictly negative if m = 2, which is a sufficient condition for strict submodularity
([1]).

Symmetrically, it can be shown that −˜̀ is strictly submodular, where ˜̀(z1, z2) =
− log(1− Ξ2(z1, z2)) is the log-loss on the other class. This is an interesting property:
indeed, submodular functions can be minimized and approximately maximized efficiently.
Though this result is limited to the bivariate setting, it may suggest that there exists a
more general structure to be discovered for any arbitrary number of variables.

4 Numerical illustration

We fit a CR model with m = 3 hyperplanes to the (checkered) dataset depicted in
Figure 2. The feature vectors x = (x1, x2, 1) are augmented with a third coordinate
in order to learn bias parameters. After 10 epochs, SGD (with learning rate set to
0.1) attains 99% classification accuracy on the training data. The same performance
is also obtained with a model having more hyperplanes than needed (for instance
m = 20).
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Figure 2: Training data (n = 500 points).
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