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This paper introduces the checkered regression model, a nonlinear general-
ization of logistic regression. More precisely, this new binary classifier relies
on the multivariate function § (14 tanh(%) x -+ x tanh(22)), which coin-
cides with the usual sigmoid function in the univariate case m = 1. While
the decision boundary of logistic regression consists of a single hyperplane,
our method is shown to tessellate the feature space by any given number
m > 1 of hyperplanes. In order to fit our model’s parameters to some
labeled data, we describe a classic empirical risk minimization framework
based on the cross entropy loss that can be optimized through stochastic
gradient descent. A multiclass version of our approach is also proposed.

1 Introduction

Logistic regression (LR) is one of the most standard approaches for binary classification:
it simply learns a linear prediciton rule, through a convex minimization problem in the
case of the cross entropy loss (see e.g. [1], [4]). Nevertheless, it suffers from a lack of
representational power: indeed, it cannot handle nonlinear relations between features
and labels. For that reason, artificial neural networks (a.k.a. deep learning models) are
nowadays preferred over linear methods such as LR across a broad spectrum of machine
learning applications, ranging from image or speech recognition to natural language
processing ([3]). But in general, the optimization of a deep neural network is a highly
non-convex problem for which we still have little theoretical understanding.

As an alternative to deep learning, this paper proposes a new binary classifier that
strictly generalizes LR: we call it the checkered regression (CR) model. Loosely speaking,
CR can be seen as a single hidden-layer neural network with tanh activations that
are multiplied together, instead of being additively combined as is customary. This is
somehow similar to the NALU module proposed in [6] that computes the elementwise
product of tanh and sigmoid activations. Contrary to LR, the scope of CR expands
beyond linear separability. As shall be seen in the next section, the predictions of a CR
model can tile the feature space into a checkerboard-like pattern.
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2 The checkered regression model

Let m > 1and 1 = (1,...,1) be the all-ones vector of size m. We start with the formal
definitions below.

Definition 1. (CHECKOID FUNCTION). The checkoid function Z,, is defined for all
z2=(21,...,2m) € R™ by

vTz

— 1 i 2k _ ZUE{O,l}m s.t. 1Tu=0[2] €
Em(z) = 3 (1 —l—kl;[ltanh <2)> S te ) x(tem)

Definition 2. (CHECKERED REGRESSION). Let X C RY (d > 1). The checkered
regression model with parameters w = (w1, ...,wm) € R is given by the posterior
probabilities

Ppw (0]z) =1 —p, (1z) =En(wiz,...,wlz) foralxze X .

m

For m = 1, Z1 = ¢ is the sigmoid function and the checkered regression is simply a
logistic regression. For general m > 1, we give next two properties of the checkoid
function and CR.

Proposition 1. (SYMMETRY OF Z,,). Let z = (z1,...,2m) € R™, k€ {1,...,m} and

2= (21, 2,) with 2, = =2 and zj = z; for j # k. Then,

En(Z) =1-2Z5(2).
Proof. By the oddness of the hyperbolic tangent. O
Lemma 1. (HAMMING DISTANCE PARITY). Consider a checkered regression model
with parameters w = (w1, ...,wn). Let z and 2’ be two points in R? both outside the m

hyperplanes of the CR model, i.e. such that w;x #0 and wlzx’ #£0 foralll <k <m.
Then, the two following conditions are equivalent.

(i) The CR model predicts that x and x' share the same label:
: 1 ‘ N 1
sign | pw (0|z) — 5 ) = sign | po (0]z") — 5)
(ii)) The Hamming distance

m
Z I {sign (wjz) # sign (wlz')}
k=1

1S even.

Proof. By successive applications of Proposition ]

Lemma [I| shows that the decision regions of a CR model form a hyperplane tessellation
of the feature space X', where the tiles are binary labeled in a checkered fashion.



Cross entropy loss Given a random pair (X,Y) valued in X x {0,1} and a collection
(X1,Y1),..., (X, Yy)) of i.i.d. copies of (X,Y"), we follow the empirical risk minimiza-
tion paradigm ([2]). In other words, we adjust the parameters w of our CR model to
match the true posterior probabilities

P(Y=0X=x2)=1-P(Y =1|X =2),

by minimizing some empirical risk. By analogy with LR, we take the cross entropy

loss:
n

min E(w) = %Z —Y;log p,(11X;) — (1 — Y;) log p, (0].X;) (1)

dm
weR i1

which also corresponds to maximum likelihood estimation.

Gradient A natural way of solving the optimization problem is through stochastic
gradient descent (SGD). At each iteration of SGD, we need to compute the gradient
(with respect to w) of the loss induced by a single training pair (X;,Y;). The next result
allows to do this differentiation.

Proposition 2. (PARTIAL DERIVATIVES). Consider the cross entropy loss of CR: for
all z=(z1,...,2m) € R™,

0(z) = —log(Zm(2))
Then for any 1 < k < m, the k-th partial derivative of ¢ is

@ =ota)- (1- S5

Oz Em(2)
where z_, = (2;) 4k -

In particular, Proposition [2| implies that the partial derivatives of ¢ are bounded in the
interval (—1,1).

Multiclass CR  We now define a muticlass version of our model that can be used in
classification problems with more than two classes. Let ) = {0,...,¢— 1} be the set of
classes with ¢ > 3.

Definition 3. (MULTICLASS CHECKERED REGRESSION). The multiclass checkered
regression model with parameters Q = (Qq,...,Qy,) € R™(c=1) 45 given by the posterior
probabilities

vy € y7 Y49} (y\l’) = Em,y(lea ey me) ;
where the multiclass checkoid function Z,, , is defined for all Z € Rle—Dxm g

—tr(EvZ
Zveym s.t. 1Tv=ylc] e ) )

(14 S5zt e ) oo (14 0oy e %im )

where E,, is the m x (¢ — 1) matriz given by [Eyl; =1{j = vg} for 1 <k <m,1 <
1 <c—1.

Emy(Z) =

For m = 1, multiclass CR coincides with the well-known multiclass (or ‘softmax’) LR
model.
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