
Ranking and Risk-Aware Reinforcement Learning
—

PhD Defense

Mastane Achab

Télécom Paris, LTCI, Palaiseau

July 10, 2020

Mastane Achab PhD Defense July 10, 2020 1 / 40



Agenda

1 Introduction
Offline Minimization of the Empirical Risk
(Online) Reinforcement Learning

2 Beyond Ranking Aggregation
Dimensionality Reduction on Permutations
Learning Bucket Orders

3 Risk-Aware Bandits
Bandits for Credit Risk
Extreme Bandits Revisited

4 Distributional Reinforcement Learning
1-Step Operators
Atomic Bellman Equations

5 Perspectives

Mastane Achab PhD Defense July 10, 2020 2 / 40



Agenda

1 Introduction
Offline Minimization of the Empirical Risk
(Online) Reinforcement Learning

2 Beyond Ranking Aggregation
Dimensionality Reduction on Permutations
Learning Bucket Orders

3 Risk-Aware Bandits
Bandits for Credit Risk
Extreme Bandits Revisited

4 Distributional Reinforcement Learning
1-Step Operators
Atomic Bellman Equations

5 Perspectives

Mastane Achab PhD Defense July 10, 2020 2 / 40



Empirical Risk Minimization (ERM)
Many ML problems belong to the ERM paradigm [Devroye et al., 1996].

What we really want ...
• Minimize the true risk:

θ∗ ∈ argmin
θ∈Θ

RP(θ) := EZ∼P [`(θ,Z )] .

• Example - Classification: Z = (X ,Y ), θ = “classifier”.

What we can compute ...
• Minimize the empirical risk:

θ̂n ∈ argmin
θ∈Θ

R̂P(θ) :=
1
n

n∑
i=1

`(θ,Zi ).

• Training dataset: n independent observations Zi ∼P .
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Classification vs. Ranking
Binary classification and bipartite ranking ([Agarwal et al., 2005]) are two
ERM problems with the same type of supervised data:

(X1,Y1), . . . ,(Xn,Yn) , valued in X × {−1,+1}.

The optimal elements θ∗ ∈Θ are given by the posterior probability
η(x)=P{Y =+1|X = x}.

Binary classification: answer to “η(x)> 0.5?” for all x
• θ = classifier g :X → {−1,+1}

• Zero-one loss function: `0/1(g ,(x ,y))= I{g(x) 6= y
}

Bipartite ranking: answer to “η(x)> η(x ′)?” for all x ,x ′

• θ = scoring function s :X →R

• Maximize the empirical AUC (s)=P{s(X )< s(X ′)|Y =−1,Y ′ =+1}:

�AUC n(s)= 1
n+ ·n−

∑
i :Yi=−1

∑
j :Yj=+1

I
{
s(Xi )< s(Xj)

}
.
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Many Rankings for Many Labels

• Bipartite ranking: Y ∈ {-, ,}

• Multipartite ranking [Rajaram and Agarwal, 2005],
[S. Clémençon and Vayatis, 2013]: Y ∈ {1F, . . . ,5F}

Continuous ranking [Clémençon and Achab, 2017]: Y ∈ [0,1]
• Application to implicit feedback [Radlinski and Joachims, 2005]:

Y = listening time of song X until skip
total duration of song X

∈ [0,1].

• For threshold y : binary subproblem with Zy = 2I{Y > y }−1.

• Continuum of binary subproblems: IROC (s)= ∫ 1
y=0ROCy (s)dFY (y),

and IAUC (s)= ∫ 1
y=0AUCy (s)dFY (y).

• Empirical maximization of �IAUC n.
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Ranking From Rankings
σ1 : ≺ ≺ ≺ ≺ ≺

. . .

σn : ≺ ≺ ≺ ≺ ≺

Ranking Aggregation [Korba et al., 2017]
Summarize a distribution P on the set of permutations SN by a single
consensus/median ranking σ∗:

σ∗ = argmin
σ∈SN

LP(σ) := E[dτ(σ,Σ)]= ∑
σ(i)<σ(j)

pj ,i ,

with Kendall’s tau distance:

dτ(σ,σ′)= ∑
1≤i<j≤N

I
{
(σ(i)−σ(j))(σ′(i)−σ′(j))< 0

}
,

and pairwise probabilities pi ,j =PΣ∼P
{
Σ(i)<Σ(j)}.
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Extension to Partial Orders
Definition (Bucket Order)
It is an ordered partition C = (C1, . . . ,CK ) of the N items {1, . . . ,N}.

C :

FOOTBALL

≺C

HOCKEY

Figure : This bucket order constrains football teams to be preferred over
hockey’s. It has size K = 2 and shape λ= (4,2).

Learning bucket orders by ERM [Achab et al., 2018b]
Find the bucket order C ∗ (of given size K and shape λ) with minimal
distortion measure:

C ∗ = argmin
C ∈CK ,λ

ΛP(C ) := min
P ′∈PC

Wdτ,1(P ,P ′)= ∑
1≤k<l≤K

∑
(i ,j)∈Ck×Cl

pj ,i .
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1st Relaxation of ERM: Biased Data

Question: What if the training dataset {Z ′
1, . . . ,Z ′

n} is i.i.d. sampled from
P ′ (training distrib.) 6=P (testing distrib.) ?

Examples of Sample Selection Bias
• censored data [Kaplan and Meier, 1958]
• Positive-Unlabeled learning [du Plessis et al., 2014]
• varying class probabilities, stratified data [Bekker and Davis, 2018]

Weighted ERM (WERM) [Vogel, Achab, et al., 2020]
Minimize the weighted empirical risk:

θ̃n ∈ argmin
θ∈Θ

R̃P ′(θ) := 1
n

n∑
i=1

Φ̂(Z ′
i )︸ ︷︷ ︸

≈ dP
dP′ (Z ′

i )

·`(θ,Z ′
i ).
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2nd Relaxation: Non-I.I.D. Data

In online learning, the training data is collected through time, depending on
the learner’s decisions:

• active learning [Minsker, 2012], [Locatelli et al., 2017]: faster
convergence rates than offline ERM,

• multi-armed bandits (MAB) [Bubeck et al., 2012],
• reinforcement learning (RL) [Sutton and Barto, 2018].
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The Casino Dilemma

E[ν1]=µ1 E[ν2]=µ2 E[ν3]=µ3 E[ν4]=µ4
Figure : “Which slot machine should I choose?”

Stochastic Multi-Armed Bandit (MAB)
At each time t ∈ {1, . . . ,T },

• pull an arm At ∈ {1, . . . ,K },
• receive reward XAt ,t ∼ νAt .

Minimize the regret: RT =∑K
a=1E[Na(T )] · (µa∗ −µa).
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Cautious Bandits
Risk-sensitive MAB
Mean reward µa = E[νa] replaced by alternative risk-measures such as:

• quantiles in [Szorenyi et al., 2015],
• the CVaR in [Galichet et al., 2013] and [Kolla et al., 2019],
• a mean-variance tradeoff in [Sani et al., 2012], generalized in
[Maillard, 2013].

In environmental or financial applications, extreme rewards are sometimes
more relevant than mean values [Beirlant et al., 2006].

Max K -Armed Bandits [Cicirello and Smith, 2005]
• Maximize: E [max1≤t≤T XAt ,t ].
• ... or equivalently, minimize the extreme regret:

RT = max
1≤a≤K

E

[
max
1≤t≤T

Xa,t

]
−E

[
max
1≤t≤T

XAt ,t

]
Mastane Achab PhD Defense July 10, 2020 11 / 40



Max K -Armed Bandits for Pareto Tails

Max K -armed bandits for Pareto-like distributions in
[Carpentier and Valko, 2014].

Contributions in [Achab et al., 2017]
• “Explore-Then-Commit” (ETC) variant of ExtremeHunter
([Carpentier and Valko, 2014]).

• For both ExtremeHunter and ExtremeETC: refined extreme regret
analysis + tight lower bound.

• Reduction to MAB by truncating the rewards: Xtruncated =X · I{X > u}.
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Learning Distributions in a Dynamic Environment

Question: Why not learning the whole distribution, instead of just a
risk-sensitive measure?
−→ Distributional reinforcement learning (DRL) [Bellemare et al., 2017].

ENVIRONMENT

AGENT

actionstate reward

Figure : MAB is a particular case of RL.
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The MDP Model of RL
Markov decision process (MDP)
A Markov decision process (MDP) is described by a tuple (X ,A ,P ,R)

• countable state space X ,
• countable action space A ,
• transition kernel P :X ×A →P (X ),
• distributional reward function R :X ×A →P (R).

State x1 State x2

P(x2|x1,a1)=1/2

P(x1|x2,a1)=1/2

P(x2|x2,a1)=1/2P(x1|x1,a1)=1/2

P(x1|x1,a2)=1 P(x2|x2,a2)=1

r(x1,a1)=0 r(x2,a1)=1

P(x2|x1,a2)=0

P(x1|x2,a2)=0
r(x1,a2)=1/4 r(x2,a2)=3/4

Figure : Example of MDP with deterministic rewards: R(x ,a)= δr(x ,a).
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Average Performance of a Policy

Distributional Discounted Return
For a discount factor γ ∈ [0,1), the distributional discounted return Zπ(x ,a)
of a policy π is the probability distribution of:

∞∑
t=0

γtRt given that X0 = x ,A0 = a,

and for all t ∈N,Rt ∼R(Xt ,At),Xt+1 ∼P(·|Xt ,At),At+1 ∼π(·|Xt+1).

How good (in expectation) is a policy π?
State-Action Value Function: for all (x ,a) ∈X ×A ,

Qπ(x ,a)= EZ0∼Zπ(x ,a)[Z0]= E
[ ∞∑
t=0

γtRt

∣∣∣ X0 = x ,A0 = a,π

]
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An Atomic Extension of Bellman’s Equations

Atomic Bellman Equations (Chap. VII)
• The N ≥ 1 atoms Θπ1(x ,a), . . . ,ΘπN(x ,a) are “conditional expectations”
summarizing the distribution Zπ(x ,a).

• They verify: for all x ,a, for all 1≤ i ≤N,

Θπi (x ,a)= Function
({
Θπj (x

′,a′) : x ′,a′, j
})

.

• −→ Atomic temporal difference algorithm.
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Bucket Ranking

Bucket Order
A bucket order C = (C1, . . . ,CK ) is an ordered partition of {1, . . . ,N}:

• Ck ’s disjoint non empty subsets of {1, . . . ,N}

•
⋃K

k=1Ck = {1, . . . ,N}

C is described by its size K , and its shape λ= (#C1, . . . ,#CK ).

Question: How much does P violate the constraints of C ?

−→Distortion: ΛP(C )= min
P ′∈PC

Wdτ,1(P ,P ′)= ∑
1≤k<l≤K

∑
(i ,j)∈Ck×Cl

pj ,i ,

where any P ′ ∈PC is described by dC =∏
1≤k≤K #Ck !−1≤N!−1

parameters (dC is the dimensionality of PC ).
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Dimension-Distortion Tradeoff

The smaller the dimension, the larger the distortion ...
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Figure : Dimension-Distortion plot for different bucket sizes on real-world
preference datasets.
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Learning Buckets From Pairwise Comparisons

ERM Setting
Training sample: Σ1, . . . ,Σn i.i.d. from P .

• Empirical pairwise probabilities:

p̂i ,j = 1
n

n∑
s=1

I{Σs(i)<Σs(j)}.

• Empirical distortion of any bucket order C :

Λ̂n(C )=ΛP̂n
(C )= ∑

1≤k<l≤K

∑
(i ,j)∈Ck×Cl

p̂j ,i . (1)

• Remark: Alternatively, observe only pairwise comparisons.
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Excess of Distortion for Given Shape

Empirical distortion minimizer ĈK ,λ is solution of:

min
C ∈CK ,λ

Λ̂n(C ),

where CK ,λ set of bucket orders C of size K and shape λ (i.e. #Ck =λk
for all 1≤ k ≤K ).

Theorem 1 in [Achab et al., 2018b]
For all δ ∈ (0,1), we have with probability at least 1−δ:

ΛP(ĈK ,λ)− inf
C ∈CK ,λ

ΛP(C )≤β(N ,λ)×
√

log( 1δ)
n

.
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Balancing Dimension & Distortion

BuMeRank Algorithm
• Start with ranking aggregation:

C (0)= ({
σ∗−1

P (1)
}

, . . . ,
{
σ∗−1

P (N)
})

, dimension dC (0) = 0.

• For step j ≥ 0, merge two adjacent cells:

C (j +1)= (C1(j), . . . ,Ck−1(j),Ck(j)∪Ck+1(j),Ck+2(j), . . . ,CK (j)) .

• The agglomerative stage C (j)→C (j +1) increases the dimension:

dC (j+1) = (dC (j)+1)×
(
#Ck(j)+#Ck+1(j)

#Ck(j)

)
−1 ,

• while reducing the distortion by:
ΛP(C (j))−ΛP(C (j +1))=∑

i∈Ck(j),j∈Ck+1(j)pj ,i .
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Credit Risk Management
Model: The population (of credit applicants) is stratified over K ≥ 1
categories.

Iterations
At each time 1≤ t ≤T ,

• a client of each category a ∈ {1, . . . ,K } asks for a credit of amount τa,
• the bank chooses a subset At ⊆ {1, . . . ,K }, and pays τa for each chosen
category a ∈At ,

• then, the bank receives the corresponding reimbursements:
Xa,t = (1+ρa)τa ·Ba,t with Bernoulli r.v. Ba,t ∼B(pa).

Reimbursement ... or credit default!
• In case of credit default: Ba,t = 0=⇒Xa,t = 0 (no refunding!).
• Otherwise, Ba,t = 1, i.e. the bank gets refunded (1+ρa)τa.
• Category a is “profitable” if: E[Xa,t ]> τa ⇐⇒ pa > 1

1+ρa
.
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Make Profit, Not Reward

Profitable Bandits [Achab et al., 2018a]
At each time t ∈ {1, . . . ,T },

• pull a subset of arms At ⊆ {1, . . . ,K } ,
• for all pulled arms a ∈At ,

pay (known) price τa (e.g. loan financed by a bank),
receive reward Xa,t ∼ νa (loan reimbursement + interest ... or default!).

Maximize expected profits: E
[∑T

t=1
∑

a∈At (Xa,t−τa)
]
.

Here, the regret is:

RT = ∑
a∈A ∗

∆a · (T −E[Na(T )])− ∑
a∉A ∗

∆a ·E[Na(T )],

with (unknown) expected profit ∆a =µa−τa, and set of profitable arms:

A ∗ =
{
a ∈ {1, . . . ,K } :∆a > 0

}
.
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RT &Constant× logT

Lower Bound: Theorem 1 in [Achab et al., 2018a]
Any uniformly efficient profitable bandits strategy produces a regret RT
asymptotically lower bounded as follows:

liminf
T→∞

RT

logT
≥ ∑

a∉A ∗

|∆a|
Kinf(νa,τa,Da)

,

where Kinf(νa,x ,Da)= inf
{
KL(νa,ν′a) : ν′a ∈Da and EX ′∼ν′a [X

′]> x
}
.
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Pull Arm If Index Above Threshold

Algorithm 1 Profitable bandits index policy

Require: time horizon T , thresholds (τa)a∈{1,...,K }.
1: Initialize: Pull all arms: A1 = {1, . . . ,K }.
2: for t = 1 to T −1 do
3: Compute index ua(t) for all arms a ∈ {1, . . . ,K }.
4: Pull arms in At+1 = {a ∈ {1, . . . ,K } : ua(t)≥ τa}.
5: end for

Asymptotically optimal algorithms (RT .
∑

a∉A ∗ |∆a|
Kinf(νa,τa,Da)

logT ):

• the kl-UCB index [Garivier and Cappé, 2011]:

ua(t)= sup
{
q > µ̂a(t) :Na(t)d(µ̂a(t),q)≤ log t+c log log t

}
,

• the Bayes-UCB index [Kaufmann et al., 2012]:

ua(t)=Q(1−1/(t(log t)c),πa,t),

• the Thompson Sampling index [Thompson, 1933]: ua(t)=µ(θa(t)).
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Experiment - Profitable Bandits
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Figure : Regret as a function of time in the Bernoulli scenario.
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Small Tail Index α Means “Heavy-Tailed”

Definition (2nd-order Pareto Distributions)
It is a distribution with c.d.f. F that satisfies: ∀x ≥ 0,

|1−Cx−α−F (x)| ≤C ′x−α(1+β).

Assumptions [Carpentier and Valko, 2014]

• The distributions ν1, . . . ,νK of the K arms are 2nd-order Pareto.
• For any arm 1≤ a≤K ,

tail index αa > 1 (finite mean),
βa ≥ b > 0.

Property
For T large enough, the optimal arm has the smallest tail index:

a∗ = argmin
1≤a≤K

αa = argmax
1≤a≤K

E

[
max
1≤t≤T

Xa,t

]
.
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On the Hunt of Extremes

ExtremeHunter [Carpentier and Valko, 2014]

• Main idea: UCB for �1/αa.

• Upper bound for the extreme regret: RT =O
(
T

1
(1+b)αa∗

)
.

Our contribution [Achab et al., 2017]
• Refined upper bound for ExtremeHunter and ExtremeETC:

RT =O
(
log(T )

2(2b+1)
b ·T−

(
1− 1

αa∗
)
+T−

(
b− 1

αa∗
))

.

• Lower bound (tight if b ≥ 1):

RT =Ω
(
log(T )

2(2b+1)
b ·T−

(
1− 1

αa∗
))

.
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Reduction to MAB with Truncated Rewards
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Figure : Expected truncated rewards E[XaI{Xa > u}] as a function of threshold u.

• Lemma 6 in [Achab et al., 2017]: For threshold u large enough,

a∗ = argmin
1≤a≤K

αa = argmax
1≤a≤K

E[Xa · I{Xa > u}].
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Truncating vs. ExtremeETC
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Figure : Extreme regret across time for different strategies.
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Distributional Bellman Operators

Question: Do we know DRL operators that are contractions?

Yes, for distributional policy evaluation [Bellemare et al., 2017]
• The distributional Bellman operator T π: for any Z :X ×A →P (R),

T πZ (x ,a)=Distrib(R0+γZ1) with R0 ∼R(x ,a),Z1 ∼Z (X1,A1).

• Lemma 3 in [Bellemare et al., 2017]: T π is a γ-contraction in
sup-Wasserstein distance W̃p.

• Distributional Bellman equation: Zπ =T πZπ.

... and for distributional control?
The answer is “No” in Proposition 1 in [Bellemare et al., 2017].
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1-Step Distributional Bellman Operators (1/2)

Our contribution: We introduce 2 new DRL operators (1 for policy
evaluation & 1 for control), that are both contractions.

Distributional policy evalutation
• The 1-Step Distributional Bellman Operator Tπ:

TπZ (x ,a)=Distrib(R0+γE[Z1|X1,A1]),

where R0 ∼R(x ,a),X1 ∼P(·|x ,a),A1 ∼π(·|X1),Z1 ∼Z (X1,A1).
• Lemma 1 in Chap. VII: Tπ is a γ-contraction in W̃p.
• If deterministic rewards R(x ,a)= δr(x ,a), fixed point of Tπ:

(x ,a) 7→ ∑
(x ′,a′)∈X×A

P(x ′|x ,a)π(a′|x ′)δr(x ,a)+γQπ(x ′,a′).
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1-Step Distributional Bellman Operators (2/2)

... and our new DRL operator for control is ...

Distributional control
• The 1-Step Distributional Bellman Optimality Operator T: for all
Z :X ×A →P (R),

TZ (x ,a)=Distrib(R0+γmax
a′∈A

E[Z1,a′ |X1]),

where R0 ∼R(x ,a),X1 ∼P(·|x ,a),Z1,a′ ∼Z (X1,a′).
• Lemma 2 in Chap. VII: T is a γ-contraction in W̃p.
• If R(x ,a)= δr(x ,a), fixed point of T:

(x ,a) 7→ ∑
x ′∈X

P(x ′|x ,a)δr(x ,a)+γmaxa′ Q∗(x ′,a′).
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Projected Bellman Operators
Let’s now focus on the (full) distributional Bellman operator T π ...
Question: In practice, how to (approximately) compute T π?

Quantile regression approach in [Dabney et al., 2018]
• Projected Bellman operator Π1,N ◦T π, with W1-projection Π1,N :

Π1,NZ (x ,a)= 1
N

N∑
i=1

δΘi (x ,a), with Θi (x ,a)= F−1
x ,a

(
2i −1
2N

)
.

• Prop. 2 in [Dabney et al., 2018]: Π1,N ◦T π is a γ-contraction in W̃∞.

Our approach: W2-projection Π2,N

• The W2-optimal atoms are trimmed means:

Θi (x ,a)=N
∫ i

N

τ= i−1
N
F−1

x ,a(τ)dτ≈ E
[
Z0

∣∣∣F−1
x ,a

( i−1
N

)≤Z0 ≤ F−1
x ,a

( i
N

)]
.

• Corollary 1 in Chap. VII: Π2,N ◦T π is a γ-contraction in W̃∞.
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Atomic Bellman Equation

• Proposition 2 in Chap. VII: For determinisic rewards R(x ,a)= δr(x ,a),
the fixed point ZΘπ of the atomic Bellman operator Π2,N ◦T π solves
the atomic Bellman equation: for all x ,a, 1≤ i ≤N,

Θπi (x ,a)= r(x ,a)+γN ∑
x ′,a′,j

µπi (Θ
π,x ,a,Θπj (x

′,a′)) ·Θπj (x ′,a′),

• with “quantile level coefficients”:

µπi (Θ
π,x ,a,θ)= Length

([
i −1
N

,
i
N

]⋂[
Hπ

x ,a(θ),Gπ
x ,a(θ)

])
,

• where Hπ
x ,a(θ)=Gπ

x ,a(θ−) and Gπ
x ,a is the c.d.f. of ZΘπ(X1,A1):

Gπ
x ,a(θ)=

∑
x ′,a′

P(x ′|x ,a)π(a′|x ′) · 1
N

N∑
j=1

I{Θπj (x
′,a′)≤θ}.
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Atomic Dynamic Programming
Given known transition probabilities P(·|x ,a), we recursively apply the
atomic Bellman operator.
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Figure : π(a1|x)≡ 1, Zπ(x1,a1)=Uniform([0,1]), Zπ(x2,a1)=Uniform([1,2]).
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Atomic Approximation Error
How far is the atomic fixed point ZΘπ to the original fixed point Zπ?

W∞-Approximation Error (Proposition 1 in Chap. VII)

supx ,aW∞(Zπ(x ,a),ZΘπ(x ,a))=O
( 1
N

)

100 101 102

Number of atoms
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10 1

-W
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se
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State 1
State 2

Figure : W∞(Zπ(x ,a1),ZΘπ(x ,a1)) for the two states x ∈ {x1,x2}.
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Atomic Temporal Difference

Consider a policy π and a single transition x ,a,r(x ,a),X1,A1 such that
X1 ∼P(·|x ,a),A1 ∼π(·|X1).

Atomic Temporal-Difference (ATD)
For all x ′ ∈X , a′ ∈A , j ∈ {1, . . . ,N},
(a) θ←Θj(x ′,a′),
(b) Gx ,a(θ)← (1−β)Gx ,a(θ)+β · 1N

∑N
k=1 I{Θk(X1,A1)≤θ},

(c) Hx ,a(θ)← (1−β)Hx ,a(θ)+β · 1N
∑N

k=1 I{Θk(X1,A1)<θ},

(d) ∀1≤ i ≤N , µi (Θ,x ,a,θ)← Length
([ i−1

N , i
N

]⋂
[Hx ,a(θ),Gx ,a(θ)]

)
.

Then, return the updated atoms in state-action (x ,a): for 1≤ i ≤N,

Θi (x ,a)← (1−α)Θi (x ,a)+α
(
r(x ,a)+γN∑

θ

µi (Θ,x ,a,θ) ·θ
)
.
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Experiment - Atomic TD
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Figure : ATD with learning rates α=β= 0.1 .
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Perspectives

• Bucket ranking with Spearman ρ: d2(σ,σ′)=
√∑N

i=1 (σ(i)−σ′(i))2.
Proposition 16 in [Achab et al., 2018b]: alternative distortion measure
Λ′

P(C )=minP ′∈PC
Wd2,2(P ,P ′), whose explicit expression involves the

triplet-wise proabilities:

pi ,j ,k =PΣ∼P

{
Σ(i)<Σ(j)<Σ(k)

}
.

• Atomic TD with function approximation for the c.d.f.’s Hx ,a(θ) and
Gx ,a(θ).

• Also, Atomic Q-learning (Chap. VII) by projecting the 1-step
distributional Bellman optimality operator.
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