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Empirical Risk Minimization (ERM)
Many ML problems belong to the ERM paradigm [Devroye et al., 1996].
What we really want ...

e Minimize the true risk:

0" e argminZp(0) :=Ez-p[4(0,2)].
00

e Example - Classification: Z=(X,Y), 6 ="classifier".

What we can compute ...

e Minimize the empirical risk:

& = 12
O, €argminZp(0):= =) £(6,Z)).
00 =1

e Training dataset: n independent observations Z; ~ P.
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Classification vs. Ranking

Binary classification and bipartite ranking (|Agarwal et al., 2005]) are two
ERM problems with the same type of supervised data:

(X1, Y1), (Xn, Yn) ,  valued in & x {-1,+1}.
The optimal elements 8* € © are given by the posterior probability
n(x) =P{Y =+1|X = x}.
Binary classification: answer to “n(x) >0.57" for all x
e 0= classifier g: ¥ — {-1,+1}
e Zero-one loss function: £,1(g,(x,y)) =0{g(x) # y}

Bipartite ranking: answer to “n(x) >n(x")?" for all x,x’
e O = scoring function s: % — R
e Maximize the empirical AUC(s) =P{s(X) <s(X')IY =-1,Y'=+1})

— 1

AUC,(s) = Yo H{s(Xi) < s(Xj)}-
Ny N—jyi=—1j:Yj=+1
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Many Rankings for Many Labels

e Bipartite ranking: Y e {3, {3}

e Multipartite ranking [Rajaram and Agarwal, 2005],
[S. Clémencon and Vayatis, 2013]: Y € {1%,...,5%}

Continuous ranking [Clémencon and Achab, 2017]: Y €]0,1]
e Application to implicit feedback [Radlinski and Joachims, 2005]:

listening time of song X until skip
= : €[0,1].
total duration of song X

e For threshold y: binary subproblem with Z, = 2I{Y > y} - 1.
e Continuum of binary subproblems: /IROC(s) :fylzo ROC,(s)dFy(y),
and JAUC(s) = [)_o AUC, (s)dFy (y).

e Empirical maximization of TAUC .
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Ranking From Rankings

o1: \’:? < I < ,.. @ < @& w
o @ < & ®< ® < < U

Ranking Aggregation [Korba et al., 2017]

Summarize a distribution P on the set of permutations Sy by a single
consensus/median ranking o*:

o* =argminlLp(0) :=E[d(0,%)] = Z Bii»
0eGy (N<a(j)

with Kendall's tau distance:

di(0,0")= 2. W(a(i)-a())(o'()-0'()) <0},

1<i<jsN

and pairwise probabilities p;; =Pz-p {Z(i) < Z(j)}
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Extension to Partial Orders

Definition (Bucket Order)
It is an ordered partition € = (61, ..., 6€k) of the N items {1,..., N}. J
Fooreail ™,  ooKer ™,
€: | 2 < 3|
8% ~ =€

Figure : This bucket order constrains football teams to be preferred over
hockey's. It has size K =2 and shape 1 =(4,2).

Learning bucket orders by ERM [Achab et al., 2018b]

Find the bucket order €* (of given size K and shape 1) with minimal
distortion measure:

€* =argminAp(€):= min Wy 1(P,P')= ) Y
€eCk,n P'ePe 1<k<I=K (i j)e€k*x€)

v
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1%t Relaxation of ERM: Biased Data

Question: What if the training dataset {Z],...,Z]} is i.i.d. sampled from
P’ (training distrib.) # P (testing distrib.) 7
Examples of Sample Selection Bias

o censored data [Kaplan and Meier, 1958]

e Positive-Unlabeled learning [du Plessis et al., 2014]

e varying class probabilities, stratified data [Bekker and Davis, 2018]

Weighted ERM (WERM) [Vogel, Achab, et al., 2020]

Minimize the weighted empirical risk:

3

~ - 1 =
0,€argminZp (0):==Y ®(Z) -£(0,Z)).
0e0 iy

|
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2nd Relaxation: Non-I.I.D. Data

In online learning, the training data is collected through time, depending on
the learner’s decisions:

e active learning [Minsker, 2012], [Locatelli et al., 2017]: faster
convergence rates than offline ERM,

o multi-armed bandits (MAB) [Bubeck et al., 2012],
e reinforcement learning (RL) [Sutton and Barto, 2018].

Mastane Achab PhD Defense July 10, 2020 9 / 40



Agenda

© Introduction

@ (Online) Reinforcement Learning
© Beyond Ranking Aggregation
© Risk-Aware Bandits

@ Distributional Reinforcement Learning

© Perspectives

Mastane Achab PhD Defense July 10, 2020 9 / 40



The Casino Dilemma

E[va] = p2 E[vs] =3 E[va] = pa

Figure : "Which slot machine should | choose?”

Stochastic Multi-Armed Bandit (MAB)
At each time te{l,..., T},
e pull an arm A; e {l,..., K},
e receive reward Xy, : ~Vva,.
Minimize the regret: R =YX E[N,(T)]- (tar — Ha)-
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Cautious Bandits
Risk-sensitive MAB

Mean reward p, =E[v,] replaced by alternative risk-measures such as:
e quantiles in [Szorenyi et al., 2015],
e the CVaR in [Galichet et al., 2013] and [Kolla et al., 2019],

e a mean-variance tradeoff in [Sani et al., 2012], generalized in
[Maillard, 2013].

In environmental or financial applications, extreme rewards are sometimes
more relevant than mean values [Beirlant et al., 2006].

Max K-Armed Bandits [Cicirello and Smith, 2005]
e Maximize:  E[maxi<¢<7 Xa, t]-

e ... or equivalently, minimize the extreme regret:

Rt = max E
l<as<K

max X, ¢| —E| max X
1<t<T a't] [1stsT Ant

o
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Max K-Armed Bandits for Pareto Tails

Max K-armed bandits for Pareto-like distributions in
[Carpentier and Valko, 2014].

Contributions in [Achab et al., 2017]

¢ “Explore-Then-Commit” (ETC) variant of ExtremeHunter
([Carpentier and Valko, 2014]).

e For both ExtremeHunter and ExtremeETC: refined extreme regret
analysis + tight lower bound.

o Reduction to MAB by truncating the rewards: Xiruncated = X - 1{X > u}. )

Mastane Achab PhD Defense
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Learning Distributions in a Dynamic Environment

Question: Why not learning the whole distribution, instead of just a
risk-sensitive measure?

— Distributional reinforcement learning (DRL) [Bellemare et al., 2017].

ENVIRONMENT [<---.

RRTOUN > AGENT

Figure : MAB is a particular case of RL.
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The MDP Model of RL

Markov decision process (MDP)
A Markov decision process (MDP) is described by a tuple (Z,</,P,R)
e countable state space &,
e countable action space <,
e transition kernel P: ¥ x of — P(X),
e distributional reward function R: % x of — 2(R).

....................

P(xolx4,a4)=1/2 1

P(X1 |X1 ,aq )=1/2
P(x2lx4,a0)=0

P(X1|X1,82)=1 P(x1lx2,a1)=1/2 P(X2|X2,az)=1

N P(x1lx,a2)=0

....................

Figure : Example of MDP with deterministic rewards: R(x,a) =0 (x,a)-
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Average Performance of a Policy

Distributional Discounted Return
For a discount factor y €[0,1), the distributional discounted return Z”(x, a)
of a policy 7 is the probability distribution of:

(e,0)
Z Y'R; given that X =x,Ag = a,
t=0

and for a” te N, Rt ~ R(Xt,At),Xt+]_ ~ P('|XtrAt))At+l ~ T[('|Xl’+1)-

How good (in expectation) is a policy 77
State-Action Value Function: for all (x,a) € Z x o,

o0
Y YR | Xo=x,Ap=a,n
t=0

Q"(x,a) = Ezy~z7(x,5)[Z0] =E
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An Atomic Extension of Bellman's Equations

Atomic Bellman Equations (Chap. VII)

e The N=1 atoms ©7(x,a),...,0}/(x,a) are “conditional expectations”
summarizing the distribution Z7(x, a).

e They verify: for all x,a, forall 1<i<N,

©7(x,a) = Function ({@7(x’,a’) x a',j}).

e — Atomic temporal difference algorithm.
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Bucket Ranking

Bucket Order

A bucket order € = (%61,...,6k) is an ordered partition of {1,..., N}:
e &) 's disjoint non empty subsets of {1,..., N}
o UK Gr=1L...\}

% is described by its size K, and its shape A = (#%€1,...,#%6k).

Question: How much does P violate the constraints of €7

¢ 1<k<I=K (i j)€€kxE

where any P’ € P is described by dy = [T1<jcx #6x! - 1< NI -1
parameters (dy is the dimensionality of P<).
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Dimension-Distortion Tradeoff

The smaller the dimension, the larger the distortion ...

10 sushi dataset 10 cars dataset 20 cars dataset
25 25 80
K K
20 . 3 201 . 3 60 4
-éls-...,. c 4 -;:515-...,, 4 5
£ Iu..‘,‘ . 5 5 Mgy, - 5 £ 40
3 10 iy . 6 210 ¥y . 6 b -
° I'l 1 ° Iy ' ° N [N
54 ' - 7 54 . - 7 0 - .,
. 8 - 8 '
0 T T T T 0 r r r r 0 T T T
100 102 10 10% 10 102 10° 10* 106 10 10%
dimension dimension dimension

Figure : Dimension-Distortion plot for different bucket sizes on real-world
preference datasets.
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Learning Buckets From Pairwise Comparisons

ERM Setting
Training sample: Z4,...,Z, i.i.d. from P.

e Empirical pairwise probabilities:
12 . .
Pij=— > UHZ(i) < Zs(j)h
ne=yp

e Empirical distortion of any bucket order ¢:

An(€)=0p (€)= X X B (1)
1sk<I=K (i,j)ebkx6

e Remark: Alternatively, observe only pairwise comparisons.
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Excess of Distortion for Given Shape

Empirical distortion minimizer Ck , is solution of:

min A,(%€),
(€€CK,,1 n( )

where Ck ;4 set of bucket orders € of size K and shape A (i.e. #%6% = Ak
for all 1<k < K).

Theorem 1 in [Achab et al., 2018b]
For all 6 € (0,1), we have with probability at least 1-§:

|0g(%).

Ap(Ck,a) —%é@;AAP(‘g) =p(N,A) <\ —
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Balancing Dimension & Distortion

BuMeRank Algorithm
e Start with ranking aggregation:

€(0)={op (1)}, ... {op 1 (N)}), dimension dg(g) =0.
e For step j =0, merge two adjacent cells:
CU+1)=(610), ..., Ck-10), () UCks1()), Cxs20()) -, Ek (j)).-
e The agglomerative stage €(j) — €(j + 1) increases the dimension:

deg(j+1) = (dig() +1) x (#cgk(";;ﬁ;fkﬂm) -1,

e while reducing the distortion by:
Ap(6(J)) = Ap(€( +1)) = Lietr(j).jcbr.r () Piri-

v

Mastane Achab PhD Defense July 10, 2020 21 / 40



Agenda

© Introduction
© Beyond Ranking Aggregation
© Risk-Aware Bandits

@ Bandits for Credit Risk

@ Distributional Reinforcement Learning

© Perspectives

Mastane Achab PhD Defense July 10, 2020 21 / 40



Credit Risk Management
Model: The population (of credit applicants) is stratified over K =1
categories.
[terations
At each time 1<t=< T,
e a client of each category a€{1,...,K} asks for a credit of amount 7,

e the bank chooses a subset «#; ={1,..., K}, and pays 7, for each chosen
category a € o,

e then, the bank receives the corresponding reimbursements:
Xat=(1+pa)Ta-Bar with Bernoulli r.v. Bt ~ B(pa).

Reimbursement ... or credit default!
e In case of credit default: B, =0= X, =0 (no refunding!).
e Otherwise, B, =1, i.e. the bank gets refunded (1+ p,)7a,.
o Category a is “profitable” if: E[X,¢]> 71, <= p,>

1
1+pa”
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Make Profit, Not Reward

Profitable Bandits [Achab et al., 2018a]
At each time te{l,..., T},

e pull a subset of arms o ={1,...,K},

e for all pulled arms a€ of;,

m pay (known) price 75 (e.g. loan financed by a bank),
B receive reward Xa ¢+ ~v5 (loan reimbursement + interest ... or default!).

Maximize expected profits: E[X_; ¥ acor, (Xae—T72)]-

Here, the regret is:

Rr=Y Aa-(T-E[No(T)])— Y Aa-E[Ns(T)],

aeol* agal*

with (unknown) expected profit A, = p,—17,, and set of profitable arms:

A :{ae{l,...,K}:Aa>0}.
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Rt 2 Constant x log T

Lower Bound: Theorem 1 in [Achab et al., 2018a]
Any uniformly efficient profitable bandits strategy produces a regret Rt
asymptotically lower bounded as follows:

R A
liminf —— > 14|

T—oco log T~ - Hint(Va T2, 2,)

where Ainf(va, x,2,) = inf{KL(va,v;) Vv, €D, and Exry [X'] > x}.

Mastane Achab PhD Defense July 10, 2020
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Pull Arm If Index Above Threshold

Algorithm 1 Profitable bandits index policy

Require: time horizon T, thresholds (7,)ae1,.. K}

1: Initialize: Pull all arms: <« =1{1,...,K}.

2. fort=1to T—-1do

3:  Compute index wu,(t) for all arms a€e{l,...,K}.
4 Pull arms in efpi1 ={aefl,...,K}:uy(t) =12}
5: end for

Asymptotically optimal algorithms (RT <Y a¢.0r+ m log T):
e the kl-UCB index [Garivier and Cappé, 2011]:
uy(t) = sup{q > [a(t) : Na(t)d(a(t), q) < logt + cloglog t},
o the Bayes-UCB index [Kaufmann et al., 2012]:
us(t) = Q(1-1/(t(logt) ), may),

e the Thompson Sampling index [Thompson, 1933]: u,(t) = p(04(t)).
July 10, 2020 25/ 40



Experiment - Profitable Bandits
250

-~ KL-UCB-4P )

-Ar- BaYEs-UCB-4P

2004 -E- TS-4p P

-~ KL-UCB+-4P
KL-EmP-UCB-4P el

150 -$%- KL-GAUSSIAN-UCB-4P Q}

-&>- UCB-V-4P -

T A T
Time (log scale)

Figure : Regret as a function of time in the Bernoulli scenario.
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Small Tail Index & Means “Heavy-Tailed"

Definition (2"-order Pareto Distributions)
It is a distribution with c.d.f. F that satisfies: ¥x =0,

1-Cx *-F(x)l < C'x~(1+B),

Assumptions [Carpentier and Valko, 2014]

e The distributions v1,...,vk of the K arms are 2"9-order Pareto.
e Forany arm 1<a<K,
® tail index @z >1 (finite mean),

m Baz=b>0. )
Property
For T large enough, the optimal arm has the smallest tail index:
a* =argmina, = argmaxE | max Xa_t].
l<asK l<asK Ist<T
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On the Hunt of Extremes

ExtremeHunter [Carpentier and Valko, 2014]
e Main idea: UCB for Zﬁa\a.

1
e Upper bound for the extreme regret: R+ =0 (T(l*")"‘a* )

Our contribution [Achab et al., 2017]
e Refined upper bound for ExtremeHunter and ExtremeETC:

Rt = O(log(T)@ . T_[l_ﬁ) + T—(b—ﬁ))‘

o Lower bound (tight if b=1):

2(2b+1)

Rt = Q(Iog( T) & - T_(l_ﬁl).

v
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Reduction to MAB with Truncated Rewards

Thresholded Pareto expectations

— (a,C)=(1.1,1)
30 — (a,C)=(2.0,100) |
— (&, C) = (3.0,8000)

)
S
!

E[X - I{X > u}]

—
o
T
!

o

0 ¥
0

20 40 60 80 100 120 140
threshold

Figure : Expected truncated rewards E[X;0{X; > u}] as a function of threshold wv.

e Lemma 6 in [Achab et al., 2017]: For threshold v large enough,

a* =argmina, = argmaxE[X; - [{X; > u}].
l=a=K l<a=K
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Truncating vs. ExtremeETC

3.5 X107, . . .
:;1 <@~ random
<= ROBUST UCB (¢ = 0.4)
2\7 3.0 1|~ ExTrREMEETC (b = 1) 5
EV 2.5 I
|
g' 2.0 - L
>
¢>§\Z| 1.5 1 L
EV
] 1.0 A L
2
= 0.5 L
(]
g
& 0.0 i
I
=
—0.5 + T T

0.0 0.2 0.4 0.6 0.8 1.0
Time step ¢ x10°

Figure : Extreme regret across time for different strategies.
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Distributional Bellman Operators

Question: Do we know DRL operators that are contractions?
Yes, for distributional policy evaluation [Bellemare et al., 2017]
e The distributional Bellman operator T": for any Z: & x of — P(R),

3‘”2(x,a) = DiStrib(R0+’}’Zl) with Ry ~ R(x,a),Zl =) Z(Xl,Al).

e Lemma 3 in [Bellemare et al., 2017]: ” is a y-contraction in
sup-Wasserstein distance W,

e Distributional Bellman equation: Z7 =9 7" Z".

. and for distributional control?
The answer is “No" in Proposition 1 in [Bellemare et al., 2017].
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1-Step Distributional Bellman Operators (1/2)

Our contribution: We introduce 2 new DRL operators (1 for policy
evaluation & 1 for control), that are both contractions.

Distributional policy evalutation

e The 1-Step Distributional Bellman Operator T™:

T"Z(x,a) = Distrib(Ro + YE[Z11 X1, A1]),

where R() = R(X, a),X1 & P('|X, a),A1 & 7'[(-|X1),Zl & Z(Xl,Al).
e Lemma 1 in Chap. VII: T” is a y-contraction in W,.
o If deterministic rewards R(x,a) =0 (x,s), fixed point of T™:

(xa)— Y PKIxa)m(d1x")8(xa)+yQ7(x,a)
(x',a")eX xof

Mastane Achab PhD Defense
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1-Step Distributional Bellman Operators (2/2)

.. and our new DRL operator for control is ...

Distributional control

e The 1-Step Distributional Bellman Optimality Operator T: for all

2% xo — P(R),

TZ(x,a) = Distrib( Ry + yyez(E[Zl,alel]),

where Ry ~ R(x,a), X1 ~ P(:Ix,a), 21,2 ~ Z(X1,d).

e Lemma 2 in Chap. VII: T is a y-contraction in W,
o If R(x,a) =0,(x,a), fixed point of T:

(x,a)— Z P(Xllx!a)6r(x,a)+ymaxar Q*(x,a"):

xX'e¥
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Projected Bellman Operators

Let’s now focus on the (full) distributional Bellman operator 7 ...
Question: In practice, how to (approximately) compute 77
Quantile regression approach in [Dabney et al., 2018]

e Projected Bellman operator I1; o I, with Wj-projection TIy y:

N

I nyZ(x,a) = Z 0i(x,a) With ©;(x,a) = F‘_i(zllel).

e Prop. 2 in [Dabney et al., 2018]: Ty yoJ " is a y-contraction in Wi,

v

Our approach: Wh-projection Iy v
e The W2 optimal atoms are trimmed means:
0 2)= NJ¥ ., Fl(x)dr~E|20|F7} () < 0= FA (7).

e Corollary 1 in Chap. VIl Ipyo T " is a y-contraction in We.

v

Mastane Achab PhD Defense
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Atomic Bellman Equation

e Proposition 2 in Chap. VII: For determinisic rewards R(x,a) = 8,(x,a),
the fixed point Zgx of the atomic Bellman operator Iy o T 7 solves
the atomic Bellman equation: for all x,a, 1<i<N,

07 (x,a)=r(x,a)+yN ) 7 (0" x,a067(x,a))-67(x,d),

x',a,j

e with “quantile level coefficients™:

N %a(0)]],

e where HJ ,(0) = G7,(60-) and G, is the c.d.f. of Zgx(X1,As1):

ur (0", x,a,0) = Length([ N N

Gy J( Z P(x'Ix,a)m(a’|x") Z[I{@” (x',a")=6}.

xa
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Atomic Dynamic Programming
Given known transition probabilities P(-|x,a), we recursively apply the

atomic Bellman operator.

State 1 State 2
08{ 1754 -
1.50 S
A
7
F e
3
+
: + == Atom 1
vy 5 - Atom 2
M 0.50 - Atom 3
0217%; E -+ Atom 4
eemremneneaneanae 0.25 : —— Averaged atoms
0.0 - - 0.00 .
0 5 10 15 20 0 5 10 15 20
Iterations

Iterations
Figure : m(a1lx) =1, Z"(x1,a1) = Uniform([0,1]), Z7(x2,a1) = Uniform([1,2]).
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Atomic Approximation Error

How far is the atomic fixed point Zg= to the original fixed point Z"?

Woo-Approximation Error (Proposition 1 in Chap. VII)

sup,.,, Woo(Z7(x,2), Zor(x,2)) = O ()

w-Wasserstein error

1071 4

1072 4

~+- State 1
~X- State 2

™
10°

T
10!
Number of atoms

102

Figure : Wixo(Z7(x,a1), Zer(x,a1)) for the two states x € {x, xo}.
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Atomic Temporal Difference

Consider a policy m and a single transition x,a, r(x,a), X1,A1 such that
X1 ~ P(-|X, a),A1 ~ 7'[(|X1)

Atomic Temporal-Difference (ATD)

Forall xXe %, deof, jell,..., N},

(a) 0 —0;(x,d),

(b) Gea(8) — (1-B)Gxa(0) + B+ XL, UOK(X1, A1) =6},

() Hxa(8) — (1= B)Hx,a(0) + - & X p, HOk(X1, A1) <6},

(d) V1<i=N, pi(0,x,a,0) — Length ([, | N[Hx,a(6), Gx,a(0)]).
Then, return the updated atoms in state-action (x,a): for 1<i<N,

0Qi(x,a) — (1-a)Oj(x,a) + a(r(x, a)+ yN%u;(@,x, a,0) -9).
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Experiment - Atomic TD

State 1
1.75 A
1.50 A
1.25 A
1.00 A
0.75 o4 v &
i’:' Atom 2
0.50 A ’_: Atom 3
3 Atom 4
0.251 % == Averaged atoms
0.00 *
0 100 200 300 0 100 200 300

Iterations Iterations

Figure : ATD with learning rates a==0.1 .
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Perspectives

o Bucket ranking with Spearman p: dx(0,0") = \/Z L (o) = o'(i))?.
Proposition 16 in [Achab et al., 2018b]: alternative distortion measure
A (€) =minprep, Wy, 2(P, P'), whose explicit expression involves the
triplet-wise proabilities:

Pij = Ps-p{2(i) < 2(j) < 2(k)}.

e Atomic TD with function approximation for the c.d.f.'s Hy ,(6) and
Gx,2(0).

e Also, Atomic Q-learning (Chap. VII) by projecting the 1-step
distributional Bellman optimality operator.
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