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Abstract

We present a generalization of the proximal operator defined through
a convex combination of convex objectives, where the coefficients are up-
dated in a minimax fashion. We prove that this new operator is Bregman
firmly nonexpansive with respect to a Bregman divergence that combines
Euclidean and information geometries.

Notations The Euclidean norm of any vector x ∈ Rm (m ≥ 1) is denoted
∥x∥. For any integer S ≥ 1, we denote by 1S the all-ones vector of size S and
by ∆S the probability simplex:

∆S =
{
q = (q1, . . . , qS) ∈ [0, 1]S : q1 + · · ·+ qS = 1

}
.

The Kullback-Leibler divergence Kullback and Leibler [1951] will be denoted by

“DKL” throughout the paper: for any q, r ∈ ∆S , DKL(r∥q) =
∑S

s=1 rs log
(

rs
qs

)
.

Let h(q) =
∑S

s=1 qs log(qs) be the negative entropy function defined over ∆S ;

its gradient ∇h(q) = (1 + log(qs))s with inverse (∇h)−1(u) = ( eus−1∑
s′ e

u
s′−1 )s for

u = (u1, . . . , uS) ∈ ∇h(∆S). Given a differentiable function ℓ = (ℓ1, . . . , ℓS) :
Rm → RS , we denote by Jℓ its Jacobian matrix. Finally, given (x, q) ∈ Rm×∆S ,

we refer to the vector Jℓ(x)
⊺q =

∑S
s=1 qs∇ℓs(x) as the “q-barygradient of ℓ at

x”.

1 Problem statement

In this article we present a generalization of the convex optimization formalism
(Boyd and Vandenberghe [2004]) that we call baryconvex optimization since it
involves weighted convex objectives where the weights are learned in a minimax
fashion.
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Definition 1 (Generalized proximal operator). Let ℓ = (ℓ1, . . . , ℓS) : Rm → RS

for m,S ≥ 1 and where ℓs is a differentiable convex function for each s ∈
{1, . . . , S}. Given λ > 0, we define our generalized proximal operator proxλℓ as
follows: for all (x, q) ∈ Rm ×∆S

proxλℓ(x, q) = argminimax
(z,r)∈Rm×∆S

Hx,q(z, r) := r⊺ℓ(z) +
1

2λ
∥z − x∥2 − 1

λ
DKL(r∥q) .

First notice that for S = 1, the probability simplex is reduced to the singleton
∆1 = {1}, and we recover the standard proximal operator with a single convex
loss function whose minimizers are exactly the fixed points of the prox. This
paper proposes to extend well-known convex optimization methods such as the
proximal point algorithm (PPA, see Rockafellar [1976]) and gradient descent
(GD, see Boyd and Vandenberghe [2004]) to our general setting with S ≥ 1.

Question: Can we compute a fixed point (if it exists) of the general-
ized prox in Definition 1?

As will be shown, the answer provided by this paper is positive.

Answer: Yes, by leveraging a Bregman geometry that combines Eu-
clidean and simplex structures.

Saddle point We point out that the function (z, r) 7→ Hx,q(z, r) is strongly
convex-concave (i.e. strongly convex in z and strongly concave in r, see e.g.
Boyd and Vandenberghe [2004]) and, if S ≥ 2, admits a unique saddle point
(x′, q′) = proxλℓ(x, q) characterized by the stationarity condition∇Hx,q(x

′, q′) =
0. Further, by the minimax theorem1, we have:

min
z

max
r

Hx,q(z, r) = Hx,q(x
′, q′) = max

r
min
z

Hx,q(z, r). (1)

In the next sections, we propose to generalize some key components of the
convex analysis toolbox (firm nonexpansion property Bauschke and Combettes
[2011], PPA and GD methods) in order to find a fixed point of proxλℓ in the
general case S ≥ 1.

2 Bregman firm nonexpansiveness

We recall from Brohé and Tossings [2000]-Bauschke et al. [2003] that an op-
erator T is Bregman firmly nonexpansive (BFNE) with respect to f if ⟨Tx −
Ty,∇f(Tx) − ∇f(Ty)⟩ ≤ ⟨Tx − Ty,∇f(x) − ∇f(y)⟩, ∀x, y. Furthermore, if
the BFNE operator has a fixed point x∗ = Tx∗, any sequence obtained by
recursively applying T , namely xk+1 = Txk, converges to a fixed point. Our
main result (Theorem 3 below) states that our generalized proximal operator
introduced in section 1 is BFNE with respect to a hybrid Bregman divergence
mixing the squared Euclidean and the KL divergences.

1see e.g. wikipedia.org/Minimax theorem or Theorem 7.1 in Cesa-Bianchi and Lugosi
[2006]
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Definition 2 (Euclidean+KL Bregman divergence). Let the function f be de-
fined for all (x, q) ∈ Rm ×∆S as follows:

f(x, q) =
1

2
∥x∥2 + h(q)

and its corresponding Bregman divergence:

Df

((
x
q

)
,

(
x′

q′

))
=

1

2
∥x− x′∥2 +DKL(q∥q′).

Theorem 3 (BFNE). Let proxλℓ and f be as defined in Definitions 1 and 2
respectively. Then, proxλℓ is Bregman firmly nonexpansive with respect to f .

Proof. For q ∈ ∆S , we have by the convexity of x 7→ q⊺ℓ(x):

q⊺ℓ(z)− q⊺ℓ(x) ≥ q⊺Jℓ(x)(z − x) (2)

and, similarly, for any other r ∈ ∆S :

r⊺ℓ(x)− r⊺ℓ(z) ≥ r⊺Jℓ(z)(x− z). (3)

Then, by summing Eqs. 2 and 3 it holds:

(Jℓ(z)
⊺r − Jℓ(x)

⊺q)⊺(z − x) ≥ q⊺ℓ(x)− q⊺ℓ(z) + r⊺ℓ(z)− r⊺ℓ(x)

⇐⇒
〈(

z
r

)
−
(
x
q

)
,

(
Jℓ(z)

⊺r
−ℓ(z)

)
−
(
Jℓ(x)

⊺q
−ℓ(x)

)〉
≥ 0. (4)

From the stationarity condition satisfied by the saddle point (x′, q′) = proxλ(x, q)
of the function Hx,q:

∇Hx,q(x
′, q′) = 0 ⇔

{
Jℓ(x

′)⊺q′ + 1
λ (x

′ − x) = 0

ℓ(x′)− 1
λ (∇h(q′)−∇h(q)) = 0

⇔

{
x = x′ + λJℓ(x

′)⊺q′

∇h(q) = ∇h(q′)− λℓ(x′).

(5)
We are now ready to prove that proxλℓ is BFNE w.r.t. f . For x, z ∈ Rm,

q, r ∈ ∆S and (x′, q′) = proxλℓ(x, q), (z
′, r′) = proxλℓ(z, r)

⟨proxλℓ(x, q)− proxλℓ(z, r),∇f(x, q)−∇f(z, r)⟩ =〈(
x′

q′

)
−
(
z′

r′

)
,

(
x

∇h(q)

)
−
(

z
∇h(r)

)〉
=

〈(
x′ − z′

q′ − r′

)
,

(
x′ + λJℓ(x

′)⊺q′ − z′ − λJℓ(z
′)⊺r′

∇h(q′)− λℓ(x′)−∇h(r′) + λℓ(z′)

)〉
= ∥x′ − z′∥2 + ⟨q′ − r′,∇h(q′)−∇h(r′)⟩

+ λ⟨x′ − z′, Jℓ(x
′)⊺q′ − Jℓ(z

′)⊺r′⟩+ λ⟨q′ − r′,−ℓ(x′) + ℓ(z′)⟩

≥ ∥x′−z′∥2+⟨q′−r′,∇h(q′)−∇h(r′)⟩ =
〈(

x′

q′

)
−
(
z′

r′

)
,∇f(x′, q′)−∇f(z′, r′)

〉
(6)
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where the inequality comes from Eq. (4).

We highlight that Theorem 3 generalizes the fact that the classic proximal
operator is firmly nonexpansive, since Df reduces to the squared Euclidean
Bregman divergence in the convex scenario S = 1. Moreover, the next result
shows that our prox can also be written as a generalized resolvent. Indeed, we
recall from Eckstein [1993]-Bauschke et al. [2003]-Borwein et al. [2011] that an
f -resolvent is equal to (∇f + λA)−1 ◦ ∇f for some monotone operator A. This
definition extends the classic notion of resolvent, namely (I + λA)−1 (which

corresponds to the particular case f = ∥·∥2

2 ), to a general Bregman divergence
Df .

Proposition 4 (f -resolvent). Consider the notations introduced in Definition
1.

(i) The operator A(x, q) =

(
Jℓ(x)

⊺q
−ℓ(x)

)
is monotone.

(ii) Our prox operator is an f -resolvent:

proxλℓ = (∇f + λA)−1 ◦ ∇f ,

with A from (i) and f from Definition 2.

Proof. (i) follows from the inequality in Eq. (4) while (ii) derives from the
stationarity condition (Eq. 5) of the saddle point (x′, q′) = proxλℓ(x, q) of the
function Hx,q.

PPA and fixed point Theorem 3 implies that the generalized proximal point
algorithm (xk+1, qk+1) = proxλℓ(x

k, qk) converges to a fixed point (x∗, q∗) of the
prox, if there exists any. Such a fixed point is characterized by:

(x∗, q∗) = proxλℓ(x
∗, q∗) ⇔

Jℓ(x
∗)⊺q∗ = 0

q∗s =
q∗se

−λℓs(x∗)∑
s′ q

∗
s′e

−λℓ
s′ (x

∗) (∀1 ≤ s ≤ S)
(7)

which means that the q∗-barygradient of ℓ at x∗ is equal to zero and that for
all (s, t) ∈ {1, . . . , S}2:

q∗s ̸= 0 and q∗t ̸= 0 ⇒ ℓs(x
∗) = ℓt(x

∗). (8)

3 The BGD algorithm

By analogy with the gradient descent update rule that approximates (for small
λ) the classic prox, we propose in the following to derive from our generalized
prox an algorithm that we call the barygradient descent algorithm (or BGD in
short). To do so, we leverage the equation (1) by using the minz maxr (resp.
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maxr minz) characterization of the saddle point (x′, q′) = proxλℓ(x, q) to update
x (resp. q).

From now on, let us assume that ℓ is twice continuously differentiable and
that max1≤s≤S supz ρ(∇2ℓs(z)) < ∞ with ρ(∇2ℓs(z)) the spectral radius of the
Hessian of ℓs at z.

3.1 Updating x (“maximize then minimize”)

In order to approximate x′, we use the equalityHx,q(x
′, q′) = minz maxr Hx,q(z, r)

from Eq. (1). In other words, we first compute the maximization over the sim-
plex for a given z, which boils down to a mirror descent update (see Beck and
Teboulle [2003], Bubeck et al. [2015]). Indeed, the solution r(z) = argmaxr∈∆S

Hx,q(z, r)
satisfies:

∇h(r(z)) = ∇h(q) + λℓ(z) ⇐⇒ ∀s, rs(z) =
qse

λℓs(z)∑
s′ qs′e

λℓs′ (z)
. (9)

Then by injecting r(z) from Eq. (9) into Hx,q we obtain:

Hx,q(z, r(z)) =
1

λ
log

(∑
s

qse
λℓs(z)

)
︸ ︷︷ ︸

Fq(z)

+
1

2λ
∥z − x∥2. (10)

Observe that the left Bregman-Moreau envelope q 7→ Fq(z) = maxr∈∆S
r⊺ℓ(z)−

1
λDKL(r∥q) is concave (see Bauschke et al. [2018]) while z 7→ Fq(z) is convex
as a supremum of convex functions. When replacing the convex function Fq(·)
in Eq. (10) by its 1st order Taylor approximation, namely F̂q(z) = Fq(x) +

∇Fq(x)
⊺(z − x), the minimizer of F̂q(z) + (1/2λ)∥z − x∥2 is simply given by

ẑ = x− λ∇Fq(x) (GD update) with gradient

∇Fq(x) =

∑
s qse

λℓs(x)∇ℓs(x)∑
s qse

λℓs(x)
. (11)

Note that ∇Fq(x) can be interpreted as the q̂-barygradient of ℓ at x with q̂s ∝
qse

λℓs(x).

3.2 Updating q (“minimize then maximize”)

Symmetrically, let us now approximate q′ by using the equality Hx,q(x
′, q′) =

maxr minz Hx,q(z, r) from Eq. (1) (i.e. first minimize w.r.t. z then maximize
w.r.t. r). Given r ∈ ∆S , the solution z(r) = argminz∈Rm Hx,q(z, r) is a stan-
dard PPA update (for the convex function z 7→ r⊺ℓ(z)) given by

z(r) = (I + λJ⊺
ℓ r)

−1x. (12)

Then by plugging Eq. (12) into Hx,q(z(r), r) we obtain the following concave
maximization problem over the probability simplex:
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max
r∈∆S

r⊺ℓ((I + λJ⊺
ℓ r)

−1x) +
λ

2
∥Jℓ((I + λJ⊺

ℓ r)
−1x)⊺r∥2︸ ︷︷ ︸

Ex(r)

− 1

λ
DKL(r∥q). (13)

Here again we propose to approximate the problem above by replacing the
concave function Ex by its 1st order Taylor expansion and obtain a mirror ascent
update rule, namely ∇h(r̂) = ∇h(q) + λ∇Ex(q).

Gradient of Ex. Let us denote B(q) = I + λJ⊺
ℓ q. We have:

Ex(q) = q⊺ℓ(B(q)−1x) +
λ

2
∥Jℓ(B(q)−1x)⊺q∥2

=
∑
s

qsℓs(B(q)−1x) +
λ

2
∥
∑
s

qs∇ℓs(B(q)−1x)∥2 . (14)

• First term: Denoting y = B(q)−1x, we have for the derivative of the first term
in Eq. (14):

∂

∂qt

(∑
s

qsℓs(B(q)−1x)

)
= ℓt(y) +

∑
s

qs
∂ℓs(y)

∂qt
. (15)

Now ∂ℓs(y)
∂qt

involves differentiating y w.r.t. qt. Using the formula for the deriva-
tive of an inverse operator, we have:

∂

∂qt
B(q)−1 = −B(q)−1 ∂B(q)

∂qt︸ ︷︷ ︸
λ∇ℓt

B(q)−1 ,

which implies ∂y
∂qt

= −λB(q)−1∇ℓt(y). Therefore

∂ℓs(y)

∂qt
= ∇ℓs(y)

⊺ ∂y

∂qt
= −λ∇ℓs(y)

⊺B(q)−1∇ℓt(y).

Hence, the gradient (w.r.t. qt) of the first term is

ℓt(y)− λ
∑
s

qs∇ℓs(y)
⊺B(q)−1∇ℓt(y). (16)

• Second term: For the derivative of the second term in Eq. (14), denoting
Z =

∑
s qs∇ℓs(B(q)−1x), the gradient of λ

2 ∥Z∥2 with respect to qt is: λZ
⊺ ∂Z
∂qt

.
Now, compute

∂Z

∂qt
= ∇ℓt(y) +

∑
s

qs
∂

∂qt
∇ℓs(y). (17)

Similarly to the first term, differentiating ∇ℓs(y) w.r.t. qt gives:

∂

∂qt
∇ℓs(y) = −λ[∇2

jℓs(y)
⊺B(q)−1∇ℓt(y)]1≤j≤m = −λ∇2ℓs(y)

⊺B(q)−1∇ℓt(y),
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where ∇2ℓs(y) denotes the Hessian matrix of ℓs at y, and ∇2
jℓs(y) its j-th

column. Finally, the gradient of the second term is:

λZ⊺ ∂Z

∂qt
= λ

(∑
s

qs∇ℓs(y)

)⊺(
∇ℓt(y)− λ

∑
s

qs∇2ℓs(y)
⊺B(q)−1∇ℓt(y)

)
.

(18)
• Collecting all terms: By summing Eqs. 16-18 we conclude that ∀t ∈ {1, . . . , S},

∂Ex

∂qt
(q) = ℓt(R(q)x) + λ2

∑
s

qs∇ℓs(R(q)x)⊺

(
Y (q)−

∑
s′

qs′∇2ℓs′(R(q)x)⊺R(q)

)
∇ℓt(R(q)x) ,

(19)
with the resolvent R(q) = B(q)−1 and Y (q) = 1

λ (I − B(q)−1) the Yosida ap-
proximation of the q-barygradient of ℓ. In practice R(q) can be approximated
by the Neumann series I−λJ⊺

ℓ q+O∥·∥op
(λ2) for λ < (supz ρ(

∑
s qs∇2ℓs(z)))

−1.

3.3 Barygradient descent

Given (xk, qk) ∈ Rm × ∆S , we define the next BGD iterate (xk+1, qk+1) as
follows (by combining sections 3.1 and 3.2):{

xk+1 = xk − λ∇Fqk(x
k)

∇h(qk+1) = ∇h(qk) + λ∇Exk(qk)
. (BGD)
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