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Context: Sequential decision-making



Markov decision process (MDP)

An MDP [Puterman, 2014] is characterized by: states x , actions a,
rewards r(x , a, x ′) and transition probabilities P(x ′|x , a).

State x1 State x2

P(x2|x1,a1)=1/2

P(x1|x2,a1)=1/2

P(x2|x2,a1)=1/2P(x1|x1,a1)=1/2

P(x1|x1,a2)=1 P(x2|x2,a2)=1

r(x1,a1)=0 r(x2,a1)=1

P(x2|x1,a2)=0

P(x1|x2,a2)=0
r(x1,a2)=1/4 r(x2,a2)=3/4



The control task

Optimality. Find a strategy π (mapping any state x to an action
π(x)) that is optimal in terms of expected cumulative discounted
return (for some discount factor 0 ≤ γ < 1):

Q∗(x , a) = max
π

Qπ(x , a) := E

∑
t≥0

γtr(Xt ,At ,Xt+1)
∣∣∣ X0 = x ,A0 = a

 ,

with states Xt+1 ∼ P(·|Xt ,At) and actions At+1 = π(Xt+1).
Reinforcement learning (RL). Learn an optimal strategy without
knowing the transitions probabilities P(x ′|x , a) or the reward
function: an RL agent only observes empirical transitions
(xt , at , rt , xt+1).



Deep Q-Network (DQN)

The DQN agent [Mnih et al., 2013] learns Q∗ with a deep neural
net Qθ with parameters θ: successfully plays Atari games!



Distributional RL [Bellemare et al., 2017]
In distributional RL, the agent learns the whole probability
distribution of the total return:

Law

∑
t≥0

γtr(Xt ,At ,Xt+1)
∣∣∣ X0 = x ,A0 = a;π

 .

In contrast, RL only focuses on the expected value Qπ(x , a) of this
distribution. On Atari games, distributional RL outperforms RL!



Our one-step solution to the instability of distributional RL

It has been shown that standard distributional RL algorithms are
unstable for the control task [Bellemare et al., 2023].

→ We solve this instability issue by only taking into account the
randomness of the one-step dynamics!



Proposed tabular one-step categorical algorithm

We propose our one-step variant of tabular CDRL
[Rowland et al., 2018].

Theorem (Convergence analysis [Achab et al., 2023])

Under standard Robbins-Monro condition, W 1(ηt , ηlim)
t→∞−−−→ 0

almost surely .



Experiments - Atari video games

We test the one-step version of the C51 deep RL algorithm.
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(b) Breakout
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Figure: Performance on three Atari games.
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