TELECOM

ParisTech

Max K-armed bandit: On the ExtremeHunter algorithm and beyond

Mastane Achab, Stéphan Clémençon, Aurélien Garivier, Anne Sabourin, Claire Vernade

ECML PKDD 2017, Skopje

Outline

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

Outline

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

The classical Multi-Armed Bandit problem

At each time $t=1, \ldots, n$

- Play a slot machine ("pull an arm")
- Receive reward

Goal: maximize cumulative reward!
Dilemma: exploration vs exploitation

Estimated empirical averages after a

A successful approach: UCB algorithm (Auer et al., 2002)

- Initialization: pull each arm once
- Then:

The Max K-Armed Bandit problem

At each time $t=1, \ldots, n$

- Choose arm $k_{t} \in\{1, \ldots, K\}$
- Observe reward $X_{k_{t}, t}$

Multi-Armed Bandits

maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{k_{t}, t}\right]$

Max K-Armed Bandits (Cicirello and Smith, 2005)
maximize $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{k_{t}, t}\right]$

Extreme Regret

- optimal arm

$$
k^{*}=\underset{1 \leq k \leq K}{\arg \max } \mathbb{E}\left[\max _{1 \leq t \leq n} X_{k, t}\right]
$$

- equivalent objective

Expected extreme regret

$\operatorname{minimize} \mathbb{E}\left[R_{n}^{\pi}\right]=\mathbb{E}\left[\max _{1 \leq t \leq n} X_{k^{*}, t}\right]-\mathbb{E}\left[\max _{1 \leq t \leq n} X_{k_{t}, t}\right]$

$2^{\text {nd }}$-order Pareto

Definition

F is a $2^{\text {nd }}$-order Pareto distribution if $\forall x \geq 0$

$$
\left|1-C x^{-\alpha}-F(x)\right| \leq C^{\prime} x^{-\alpha(1+\beta)}
$$

with constants $\alpha, \beta, C, C^{\prime}>0$.
Some properties

- for $\beta=+\infty, F(x)=1-C x^{-\alpha}$ (exact Pareto)
- finite moments of orders $r<\alpha$

Assumption: $\alpha>1$ (finite mean).

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

$X_{1: n} \sim^{\text {iid }} 2^{\text {nd }}$-order Pareto $\left(\alpha>1, \beta, C, C^{\prime}\right)$
$\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right] \sim_{n \rightarrow \infty}(n C)^{1 / \alpha} \Gamma(1-1 / \alpha) \quad$ (mean of a Fréchet distribution)

Theorem 1

$$
\left|\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]-(n C)^{1 / \alpha} \Gamma(1-1 / \alpha)\right|=\mathcal{O}\left(n^{-(\min (1, \beta)-1 / \alpha)}\right)
$$

sharper than $\mathcal{O}\left(n^{\frac{1}{(1+\beta) \alpha}}\right)$ in C\&V14.

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

ExtremeETC algorithm

- UCB idea:

$$
\begin{align*}
B_{k} & =\left(n\left(\widehat{C_{k}}+\Lambda_{2}\right)\right)^{\widehat{1 / \alpha_{k}}+\Lambda_{1}} \Gamma\left(1-\widehat{1 / \alpha_{k}}-\Lambda_{1}\right) \\
& \geq \mathbb{E}\left[\max _{1 \leq t \leq T} X_{k, t}\right] \text { with high probability } \tag{1}
\end{align*}
$$

- Initialization: pull each $\operatorname{arm} N=A(\log n)^{\frac{2(2 b+1)}{b}}$ times

EXTREMEETC vS EXTREMEHUNTER	
1: Input: $n:$ time horizon, $K:$ number of arms,	
	$b>0$ such that $b \leq \min _{k} \beta_{k}$.

Tight regret bounds

Theorem

(i) Upper bound for ExtremeETC and ExtremeHunter

$$
\mathbb{E}\left[R_{n}\right]=\mathcal{O}\left((\log n)^{\frac{2(2 b+1)}{b}} n^{-\left(1-1 / \alpha_{k^{*}}\right)}+n^{-\left(b-1 / \alpha_{k^{*}}\right)}\right),
$$

sharper than $\mathcal{O}\left(n^{\frac{1}{(1+b) \alpha_{k^{*}}}}\right)$ in C\&V(14).
(ii) Lower bound for any algorithm pulling each arm at least N times

$$
\mathbb{E}\left[R_{n}\right]=\Omega\left((\log n)^{\frac{2(2 b+1)}{b}} n^{-\left(1-1 / \alpha_{k^{*}}\right)}\right)
$$

When $b \geq 1$, (i) and (ii) are tight!

Regret bounds - idea of proof

- favorable event $(\mathcal{A}): 1 / \alpha_{k}, C_{k} \in$ confidence intervals
- Lemma: under $(\mathcal{A}), k^{*}$ always pulled
- use Theorem 1 to control $\mathbb{E}[m a x . .$.

Outline

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

Reduction to Multi-Armed Bandits

- Idea: peak over threshold
- Truncated rewards: $Y_{k, t}=X_{k, t} \mathbb{1}_{\left\{X_{k, t}>u\right\}}$.
- $\mathbb{E}\left[Y_{k, 1}\right] \sim_{u \rightarrow \infty} C_{k}\left(1+\frac{1}{\alpha_{k}-1}\right) u^{-\alpha_{k}+1}$.
- For u and n large

$$
\underset{1 \leq k \leq K}{\arg \max } \mathbb{E}\left[Y_{k, 1}\right]=\underset{1 \leq k \leq K}{\arg \min } \alpha_{k}=k^{*} .
$$

- MAB objective: maximize $\mathbb{E}\left[\sum_{t=1}^{n} Y_{k_{t}, t}\right]$.
- We use Robust UCB (Bubeck et al., 2013)
- parameters: $\epsilon<\min _{1 \leq k \leq K} \alpha_{k}-1, v \geq \max _{k \in[K]} \mathbb{E}\left[\left|Y_{k, 1}\right|^{1+\epsilon}\right]$
- $\mathbb{E}\left[\#\right.$ pulls arm $\left.k \neq k^{*}\right]=\mathcal{O}(\log n)<N$.

Outline

Introduction

Controlling $\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$

ExtremeETC algorithm

Reduction to Multi-Armed Bandits

Experiments

Experiments

- time horizon $n=10^{5}$
- K $=3$ exact Pareto distributions $(\beta=+\infty)$

Arm	1	$k^{*}=2$	3
α	15	1.5	10
C	10^{8}	1	10^{5}
$\mathbb{E}[X]$	3.7	3	3.5
$\mathbb{E}\left[\max _{1 \leq t \leq n} X_{t}\right]$	7.7	$5.8 \cdot 10^{3}$	11

Experiments

Linear regression for ExtremeETC over $t=5 \cdot 10^{4}, \ldots, 10^{5}$ has slope ≈-0.333 (with $R^{2} \approx 0.97$)
\rightarrow validation of bounds!

