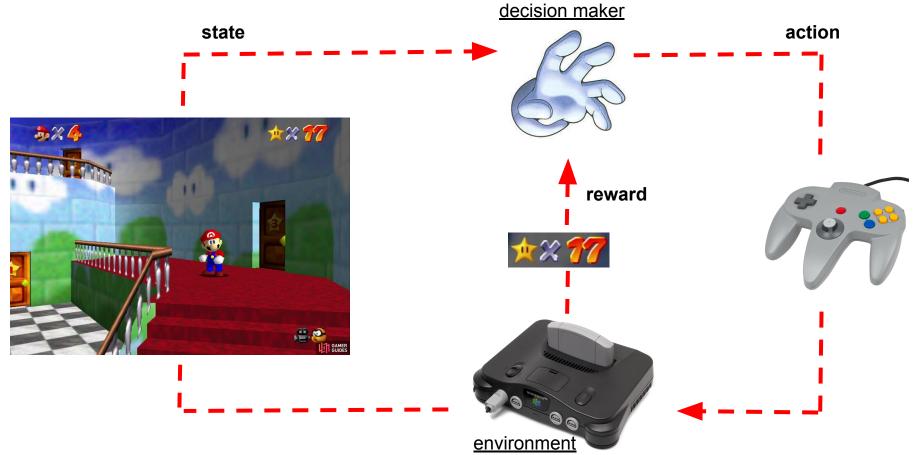
Robustness via distributional dynamic programming

Mastane Achab, February 2022, based on joint work with Gergely Neu

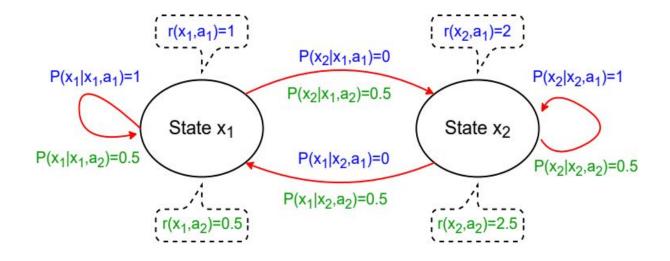
Context - Sequential decision making



Markov decision process (MDP) setting

- Finite state space χ
- Finite action space ${\cal A}$

- Transition kernel $P: \mathcal{X} \times \mathcal{A} \to \mathcal{P}(\mathcal{X})$
- Reward function $r: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \to \mathbb{R}$
- Discount factor $0 \leq \gamma < 1$



The discounted return

Given a policy $\pi:\mathcal{X} o\mathcal{P}(\mathcal{A})$ and initial state $X_0=x$ and action $A_0=a$,

$$Z^{\pi}(x,a) = \sum_{t=0}^{\infty} \gamma^t r(X_t, A_t, X_{t+1})$$

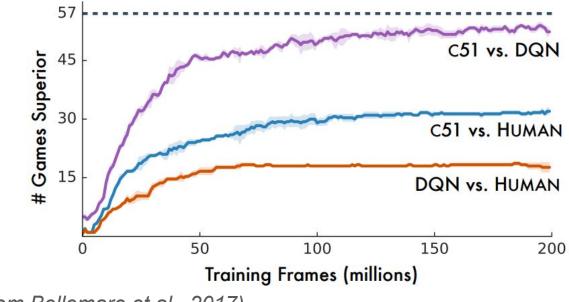
$$\rightarrow$$
 next state $X_{t+1} \sim P(\cdot|X_t, A_t)$

→ next action $A_{t+1} \sim \pi(\cdot | X_{t+1})$

Expected value
 $Q^{\pi}(x,a) = \mathbb{E}[Z^{\pi}(x,a)]$ Bellman equation
 $Q^{\pi} = T^{\pi}Q^{\pi}$

Empirical success of the distributional perspective

- reinforcement learning (RL) learns expectations $Q^{\pi}(x,a)$
- distributional RL learns distributions $\mu_{\pi}^{(x,a)}$



(illustration from Bellemare et al., 2017)

Remi Munos' concluding slide (from his distributional RL presentation)

What is going on?

• We learn these distributions, but in the end we only use their mean

Non-trivial interactions between deep learning and RL:

- Learn richer representations
 - Same signal to learn from but more predictions
 - \circ More predictions \rightarrow richer signal \rightarrow better representations
 - Can better disambiguate between different states (state aliasing)
- Density estimation instead of I2-regressions
 - Express RL in terms of usual tools in deep learning
 - Variance reduction

Now maybe we could start using those distributions? (e.g, risk-sensitive control, exploration, ...)

...in this talk, we leverage the distributional perspective for **risk-sensitive** purpose!

Our contributions

- 1) Our approach provides **two Q-functions** $Q_1^{\pi}(x, a)$ and $Q_2^{\pi}(x, a)$
- 2) Simple and efficient dynamic programming (DP) algorithms
- 3) Q_1^{π} and Q_2^{π} have a **robust MDP** interpretation
- 4) New risk-sensitive control tasks in **balanced MDPs** + DP algorithms
- 5) Linear program (LP) for risky control (but not for safe control)

Overall feeling: natural extension of the "non-distributional" framework

Warm-up: monoatomic case

- 1. Take distributions with 1 atom: $\delta_{Q(x,a)}$
- 2. Apply the distributional Bellman operator \mathcal{T}^{π} :

$$\sum_{x',a'} P(x'|x,a) \pi(a'|x') \delta_{r(x,a,x')+\gamma Q(x',a')}$$

(new atomic distribution with up to |X|.|A| times more atoms!!)

- 3. Project back to a single atom:
 - a. in Dabney et al. (2018), W₁-projection --> median
 - b. W₂-projection --> expectation --> usual policy evaluation update:

$$Q'(x,a) = \sum_{x',a'} P(x'|x,a)\pi(a'|x') \left(r(x,a,x') + \gamma Q(x',a') \right)$$

Sketch of our diatomic approach (for policy evaluation)

- 1. Fix a probability weight: $0 < \alpha < 1$
- 2. Take distributions with 2 atoms: $\alpha \delta_{Q_1(x,a)} + (1-\alpha) \delta_{Q_2(x,a)}$
- 3. Apply the distributional Bellman operator \mathcal{T}^{π} :

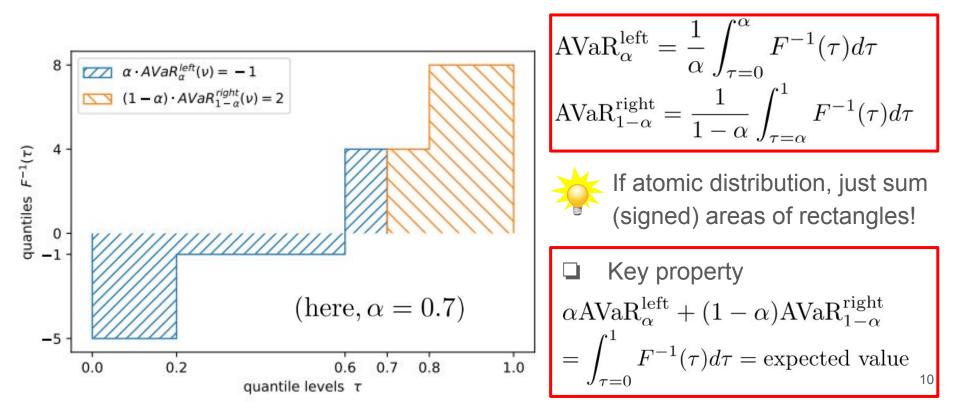
$$\sum_{x',a'} P(x'|x,a)\pi(a'|x') \left(\alpha \delta_{r(x,a,x')+\gamma Q_1(x',a')} + (1-\alpha)\delta_{r(x,a,x')+\gamma Q_2(x',a')}\right)$$

(new atomic distribution with up to |X|.|A| times more atoms!!)

4. Project back to a distribution with 2 atoms: $\alpha \delta_{Q'_1(x,a)} + (1-\alpha) \delta_{Q'_2(x,a)}$ in this talk, W₂-projection --> average value-at-risk (AVaR) a.k.a CVaR

The 2-Wasserstein projection

(summarizing an entire distribution by two scalars)



Update rule: from (Q_1, Q_2) to next pair (Q'_1, Q'_2)

For all (x,a), we summarize the following atomic distribution

$$\sum_{x',a'} P(x'|x,a) \pi(a'|x') \left(\alpha \delta_{r(x,a,x')+\gamma Q_1(x',a')} + (1-\alpha) \delta_{r(x,a,x')+\gamma Q_2(x',a')} \right)$$

by 2 atoms, namely its left and right AVaRs:

$$Q_1'(x,a) = \operatorname{AVaR}_{lpha}^{\operatorname{left}}$$
 and $Q_2'(x,a) = \operatorname{AVaR}_{1-lpha}^{\operatorname{right}}$

Good news: this can be computed exactly and efficiently!!

The Sorted Policy Evaluation (SPE) algorithm

Algorithm 1 SORTED POLICY EVALUATION (SPE), single iteration.

Parameters: policy $\pi \in \Pi$, number of particles $M = 2|\mathcal{X}||\mathcal{A}|$, level $\alpha \in (0, 1)$, $(\alpha_1, \alpha_2) = (\alpha, 1 - \alpha)$

Input: double Q-function $\mathscr{Q} = (Q_1, Q_2)$

- 1: for each state-action pair $(x, a) \in \mathcal{X} \times \mathcal{A}$ do
- 2: probability-particle pairs:

 $(p_j, v_j)_{j=1}^M \leftarrow (\alpha_i P(x'|x, a) \pi(a'|x'), r(x, a, x') + \gamma Q_i(x', a'))_{(x', a', i) \in \mathcal{X} \times \mathcal{A} \times \{1, 2\}}$

3: particle sorting: $v_{\sigma(1)} \leq \cdots \leq v_{\sigma(M)}$ with σ an "argsort" permutation

4: reordering: $(p_j, v_j) \leftarrow (p_{\sigma(j)}, v_{\sigma(j)})$ for $j = 1 \dots M$

5: left AVaR:
$$Q'_1(x,a) \leftarrow \frac{1}{\alpha} \sum_{j=1}^M \max\left(0, \min\left(p_j, \alpha - \sum_{j' \leq j-1} p_{j'}\right)\right) \cdot v_j$$

6: right AVaR:
$$Q'_2(x,a) \leftarrow \frac{1}{1-\alpha} \sum_{j=1}^M \max\left(0, \min\left(p_j, \sum_{j' \le j} p_{j'} - \alpha\right)\right) \cdot v_j$$

7: end for

Output: next double Q-function $\mathcal{T}^{\pi}_{\alpha}\mathcal{Q} = (Q'_1, Q'_2)$

Time complexity per iteration:

- Classic policy evaluation: O($|X|^2$.|A|)
- ♦ SPE: O((|X|.|A|)².log(|X|.|A|))
 - \succ if deterministic policy: O(|X|².|A|.log(|X|))
 - \rightarrow if r(x,a,x') = r(x,a): remove the log term!

Some properties

- $(Q_1, Q_2) \mapsto Q'_1(x, a)$ is piecewise linear concave
- $(Q_1, Q_2) \mapsto Q'_2(x, a)$ is piecewise linear convex
- Fixed point: (Q_1^{π}, Q_2^{π})
- averaging property: $\alpha Q_1^{\pi} + (1 \alpha)Q_2^{\pi} = Q^{\pi}$
- relative order: $Q_1^{\pi}(x,a) \leq Q^{\pi}(x,a) \leq Q_2^{\pi}(x,a)$

In general,
$$\begin{cases} Q_1^{\pi}(x,a) \neq \text{AVaR}_{\alpha}^{\text{left}}(\mu_{\pi}^{(x,a)}) \\ Q_2^{\pi}(x,a) \neq \text{AVaR}_{1-\alpha}^{\text{right}}(\mu_{\pi}^{(x,a)}) \end{cases}$$

...OK, then what do these two Q-functions really mean??

Main result - Robust MDP interpretation

Consider a deterministic policy and define

 $V_1^{\pi}(x) := Q_1^{\pi}(x, \pi(x)) \quad \text{and} \quad V_2^{\pi}(x) := Q_2^{\pi}(x, \pi(x)) \quad .$

Theorem: for all states x,

$$V_1^{\pi}(x) = \inf_{\mathbf{P}\in\Upsilon_{lpha}} V_{\mathbf{P}}^{\pi}(\underline{x}) \quad \text{and} \quad V_2^{\pi}(x) = \sup_{\mathbf{P}\in\Upsilon_{lpha}} V_{\mathbf{P}}^{\pi}(\overline{x}) \,,$$

where • $V^{\pi}_{\mathbf{P}}$ denotes the value function in an **augmented MDP** with kernel \mathbf{P}

• all infima and suprema are attained at the same kernel

Splitting each state x into two substates x and \overline{x}

The "dichotomous uncertainty set" denoted by Υ_{α} contains all augmented kernels ${f P}$ that are *consistent* with the original one P :

$$\begin{cases} \alpha \mathbf{P}(\underline{x'}|\underline{x},a) + (1-\alpha)\mathbf{P}(\underline{x'}|\overline{x},a) = \alpha P(x'|x,a) \\ \alpha \mathbf{P}(\overline{x'}|\underline{x},a) + (1-\alpha)\mathbf{P}(\overline{x'}|\overline{x},a) = (1-\alpha)P(x'|x,a) \\ \mathbf{P}(\underline{x'}|\underline{x},a) \ge \frac{\alpha}{1-\alpha}\mathbf{P}(\overline{x'}|\underline{x},a) \end{cases} \xrightarrow{\mathsf{P}(\underline{x'}|\underline{x},a)} \\ \mathsf{P}(\underline{x'}|\underline{x},a) \ge \frac{\alpha}{1-\alpha}\mathbf{P}(\overline{x'}|\underline{x},a) \xrightarrow{\mathsf{P}(\underline{x'}|\underline{x},a)} \\ (\underline{x}|\underline{x}) \xrightarrow{\mathsf{P}(\underline{x'}|\underline{x},a)} \xrightarrow{\mathsf{P}(\underline{x'}|\underline{x},a)} \end{cases}$$

(rewards and policies are extended trivially to substates) 15

Robust control in balanced MDPs

(Shocking) Assumption: an MDP is said balanced if all policies are optimal:

for all
$$~\pi$$
 , $~Q^{\pi}=Q^{*}$.

- → Example 1: MDP in slide 3, combined with $\gamma = 0.5$
- → Example 2: first solve classic control in some MDP, then remove suboptimal actions in each state

By the **averaging property**, there is a clear tradeoff between safety and risk:

$$\alpha Q_1^{\pi} + (1 - \alpha) Q_2^{\pi} = Q^*$$

\rightarrow	<u>safe policy</u> :	maximize	Q_1^{π}	<==>	minimize	Q_2^{π}
→	<u>risky policy</u> :	maximize	Q_2^{π}	<==>	minimize	Q_1^{π}

Safe/Risky Sorted Value Iteration

Safe SVI:

$$Q_1'(x,a) = \operatorname{AVaR}_{\alpha}^{\operatorname{left}}\left(\sum_{x'} P(x'|x,a) \left(\alpha \delta_{r(x,a,x')+\gamma \max_{a'} Q_1(x',a')} + (1-\alpha) \delta_{r(x,a,x')+\gamma \min_{a'} Q_2(x',a')}\right)\right)$$

where
$$Q_2(x',a') := \frac{V^*(x') - \alpha Q_1(x',a')}{1 - \alpha}$$

<u>Risky SVI</u>: just swap min and max

Implementation:as for SPE, first sort atoms, then "sum areas of rectangles"Fixed points: $Q_1^{safe} = \sup_{\pi} Q_1^{\pi}$ and $Q_1^{risky} = \inf_{\pi} Q_1^{\pi}$ Time complexity: \checkmark Classic value iteration: O($|X|^2 . |A|$) \checkmark Safe/Risky SVI: O($|X|^2 . |A| . log(|X|)$) \succ if r(x,a,x') = r(x,a): remove log

Safe/Risky (optimal) actions

• **Safest policies:** in each state x,

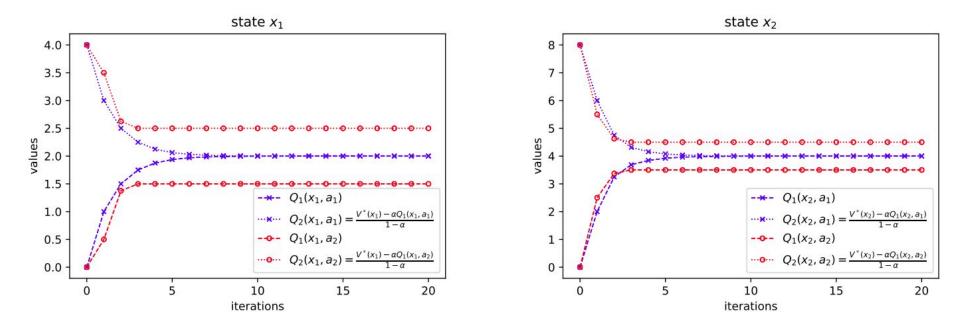
$$\operatorname{Support}(\pi(\cdot|x)) \subseteq \operatorname{argmax}_a Q_1^{\operatorname{safe}}(x,a)$$

• **<u>Riskiest policies</u>**: in each state x,

$$\operatorname{Support}(\pi(\cdot|x)) \subseteq \operatorname{argmin}_a Q_1^{\operatorname{risky}}(x,a)$$

Toy experiment

Safe control for $\alpha = 0.5$ in balanced MDP from slide 3 (with discount factor 0.5).



Perspectives

- 1) Beyond atomic distributions
 - a) piecewise linear CDF --> weighted AVaR
- 2) Balanced MDPs
 - a) find a natural class of "balanced MDP" problems
 - b) relax this assumption
- 3) LP for risky control
 - a) Q-REPS style algorithm
 - b) combine with classic LP
- 4) distributional RL
 - a) learn CDF and atoms $Q_1(x,a),...,Q_N(x,a)$, not quantile function!
 - b) ...by exponential moving average (cf. my thesis)
 - c) ... or with Cramer loss

References

- Robustness and risk management via distributional dynamic programming (Achab and Neu, arXiv preprint, 2021)
- Ranking and risk-aware reinforcement learning, chapter 7 (Achab, PhD thesis, 2020)
- Distributional reinforcement learning with quantile regression (Dabney, Rowland, Bellemare, Munos, AAAI 2018)
- A distributional perspective on reinforcement learning (Bellemare, Dabney, Munos, ICML 2017)

Bonus slide - Atomic Bellman equation with CDF (for N uniformly weighted atoms $Q_1, ..., Q_N$)

For all (x,a) and atom index $1 \le i \le N$,

$$Q_{i}^{\pi}(x,a) = N \cdot \sum_{\theta} \text{Length}\left(\left[\frac{i-1}{N}, \frac{i}{N}\right] \cap \left[F_{x,a}(\theta-), F_{x,a}(\theta)\right]\right) \cdot \theta$$

where θ ranges over $\{r(x,a,x') + \gamma Q_{j}^{\pi}(x',a') : (x',a',j) \in \mathcal{X} \times A \times \{1,\ldots,N\}\}$
with the CDF $F_{x,a}(\theta) = \mathbb{E}_{(X_{1},A_{1})}\left[\frac{1}{N}\sum_{j=1}^{N} \mathbb{I}\{r(x,a,X_{1}) + \gamma Q_{j}^{\pi}(X_{1},A_{1}) \leq \theta\}\right]$
and its left limit $F_{x,a}(\theta-) = \mathbb{E}_{(X_{1},A_{1})}\left[\frac{1}{N}\sum_{i=1}^{N} \mathbb{I}\{r(x,a,X_{1}) + \gamma Q_{j}^{\pi}(X_{1},A_{1}) \leq \theta\}\right]$