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Abstract

We consider theproblemofminimizing a function in a pseudo-Riemannian
space. We show that under a lightlike constraint, the steepest descent
produces an adaptive gradient method.

Notations The Euclidean norm of any vector x P Rm (m ě 1) is denoted
}x}. Given a symmetric positive definite matrix W P Rmˆm, we define the
weighted norm } ¨ }W as

}x}W =
?
xTWx . (1)

1 Introduction
The purpose of this paper is to show that a certain pseudo-Riemannian
minimization problem leads to an adaptive gradient method. Let us first
briefly recall a few related notions of Riemannian optimization (Bonnabel
[2013],Zhang and Sra [2016]) and of adaptivity.

Riemannian optimization. In a Riemannian space (Rm,A) with A a posi-
tive definite metric tensor, it was shown by Amari [1998] that the steepest
descent direction of some function f(x) is given by the negative natural
gradient ´A(x)´1∇f(x), which is also known as Riemannian gradient de-
scent in more general Riemannian manifolds (see e.g. Boumal [2023]). In
the Euclidean scenario A ” Im, it boils down to gradient descent.
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Adaptive gradient methods. The idea of adaptivity in gradient-based op-
timization of a vector parameter x is to use, at every iteration t, a separate
learning rate λt,i for each coordinate xi. In popular approaches such as
AdaGrad (Duchi et al. [2011]) and RMSprop (Tieleman [2012]), this is gen-
erally achieved by setting λt,i = λ/

a

Gt,i where Gt,i is a scalar summary of
the history of squared i-th partial derivatives up to time t.

As in Bécigneul and Ganea [2018], this work proposes to combine both
topics under a block-diagonal metric assumption.

2 Steepest lightlike descent
Pseudo-Riemannian setting. We consider the problem of minimizing a
differentiable real-valued function f defined over the pseudo-Riemannian
spaceRm+n (withm,n ě 1) equippedwith the block-diagonal metric tensor
given by

M(z) =

(
A(z) 0mˆn

0nˆm ´B(z)

)
(2)

where for all z = (x, y) P RmˆRn, both A(z) and B(z) are symmetric positive
definite matrices. Clearly, M has the metric signature (m,n, 0).
Example 1 (Spacetime). Flat Minkowski spacetime; Lorentzian geometry
(see O’neill [1983],Bär [2004]).
Example 2 (Euclidean-Information). See Achab [2024] for an example of an
optimization problemunder the productmetric composed of the Euclidean
and Fisher-Rao metrics (Rao [2009]).

Radiant descent. Let us start by introducing a vector we call the “radiant”,
which will play in our pseudo-Riemannian framework the same role that
the standard gradient plays in Euclidean steepest descent.
Assumption 1 (Regular point). A point z = (x, y) P Rm ˆ Rn is said regular
if

Bf

Bx
(z) =

(
Bf

Bxi
(z)

)
1ďiďm

‰ 0m and Bf

By
(z) =

(
Bf

Byj
(z)

)
1ďjďn

‰ 0n .

Definition 1 (Radiant vector). Under Assumption 1, we define the radiant
of f at z as:

ⴵf(z) =
(

}
Bf
Bx (z)}

´1
A(z)´1A(z)´1 Bf

Bx (z)

}
Bf
By (z)}

´1
B(z)´1B(z)´1 Bf

By (z)

)
P Rm+n.

By analogy with Minkowski spacetime, we say that a vector v P Rm+n is
lightlike1 at z if

v⊺M(z)v = 0 . (Lightlike)
1Recall that in Minkowski spacetime, a 4D vector v = (x, y, z, ct) is said null or lightlike if

v⊺Diag(1, 1, 1,´1)v = x2 + y2 + z2 ´ c2t2 = 0.
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Proposition 2. The radiant vector ⴵf(z) is lightlike at z.

Proof. It holds:

ⴵf(z)⊺M(z)ⴵf(z) =
}

Bf
Bx (z)}

2
A(z)´1

}
Bf
Bx (z)}

2
A(z)´1

´
}

Bf
By (z)}

2
B(z)´1

}
Bf
By (z)}

2
B(z)´1

= 0.

We are now ready to state our main result.

Theorem 3. Under Assumption 1, the steepest Lightlike descent direction
of f at z is given by the negative radiant vector ´ⴵf(z).

Proof. Let us follow thederivation of thenatural gradient fromAmari [1998].
Given z = (x, y) and infinitesimal ϵ ą 0, we search for v = (a, b) that mini-
mizes f(z + ϵv) « f(z) + ϵ∇f(z)⊺v under the constraints:

#

a⊺A(z)a = 1

b⊺B(z)b = 1
, (3)

ensuring that v satisfies the Lightlike condition

v⊺M(z)v = 0.

By the Lagrangian method, we have
#

B
Batϵ∇f(z)⊺v + µ1a

⊺A(z)au = 0m

B
Bbtϵ∇f(z)⊺v + µ2b

⊺B(z)bu = 0n

ô

#

a = ´ ϵ
2µ1

A(z)´1 Bf
Bx (z)

b = ´ ϵ
2µ2

B(z)´1 Bf
By (z)

. (4)

Finally, we deduce by combining Eqs. 3-4 that

ϵ2}
Bf
Bx (z)}

2
A(z)´1

4µ2
1

=
ϵ2}

Bf
By (z)}

2
B(z)´1

4µ2
2

= 1, (5)

which concludes the proof since

v = ´ⴵf(z).

Theorem 3 motivates the following iterative pseudo-Riemannian mini-
mization algorithm.

Definition 4 (Radiant Descent). For step-size λ ą 0, time step t P N, we
define the radiant descent iteration as

zt+1 = zt ´ λⴵf(zt) . (RD)
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The radiant descent (RD) algorithm borrows ideas from Riemannian op-
timization, by computing theRiemanniangradient in eachof the twogroups
of coordinates x and y, and from the concept of adaptivity by rescaling the
effective learning rates for x and y in terms of the weighted norms of the
partial derivatives of the objective function f .
Remark 1 (Adaptive Stochastic RD). A natural way to turn RD into a stochas-
tic algorithm is to replace the squared weighted norms of the full batch
gradients with some adaptive moving averages, akin to RMSprop.
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