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The Profitable Bandit problem

At each time t = 1, ..., T :

• choose arms At ⊂ {1, ...,K}

• observe rewards Xa,c,t ∼ νa for all a ∈ At, c ∈ {1, . . . , Ca(t)}

∗ Objective: maximize ST = E
[∑T

t=1

∑
a∈At

∑Ca(t)
c=1 (Xa,c,t − τa)

]
.

∗ Optimal choice: A∗ = {a ∈ {1, . . . ,K},∆a > 0} with ∆a = µa − τa and µa = E[Xa,1,1].
∗ Equivalently, minimize the expected regret:

RT =
∑
a∈A∗

∆aC̃a(T )− ST =
∑
a∈A∗

∆a

(
C̃a(T )− E[Na(T )]

)
+
∑
a/∈A∗

|∆a|E[Na(T )],

where C̃a(T ) = E[
∑T

t=1 Ca(t)] and Na(T ) =
∑T

t=1 Ca(t)I{a ∈ At}.

Lower bound

Theorem 1. If the νa’s belong to an one-dimensional exponential family, for all uniformly efficient strate-
gies, for all non-profitable arms a such that µa < τa,

lim inf
T→∞

E[Na(T )]

log T
≥ 1

d(µa, τa)
,

with d the KL-divergence of the family parametrized by the mean: d(µa, µa′) = KL(νa, νa′).
∗ Consequence:

RT &
∑
a/∈A∗

|∆a|
d(µa, τa)

log T.

Index policies

An index policy is fully characterized by the choice of index ua(t).

Generic index policy

Require: time horizon T , thresholds (τa)a∈{1,...,K}.
1: Pull all arms: A1 = {1, . . . ,K}.
2: for t = 1 to T − 1 do
3: Compute ua(t) for all arms a ∈ {1, . . . ,K}.
4: Choose At+1 ← {a ∈ {1, . . . ,K}, ua(t) ≥ τa}.
5: end for

We consider the three following index policies.

• kl-UCB-4P: ua(t) = sup
{
q > µ̂a(t) : Na(t)d(µ̂a(t), q) ≤ log t+ c log log t

}
.

• Bayes-UCB-4P: ua(t) = Q(1−1/(t(log t)c);λt−1a ), with λt−1a the post. distrib. on µa after round t−1.

• Thompson-Sampling-4P: ua(t) = µ(θa,t), where θa,t ∼ πt−1
a with πt−1

a the post. distrib. on θa after
round t− 1.

Upper bound

Theorem 2. For kl-UCB-4P, Bayes-UCB-4P and TS-4P:

RT ≤
∑
a/∈A∗

c+a
c−a

|∆a|
d(µa, τa)

log T + o(log log T ),

where c−a and c+a are constants such that for all t ≥ 1: c−a ≤ Ca(t) ≤ c+a .

∗ Conclusion: the three algorithms are asymptotically optimal when Ca(1) = · · · = Ca(T ) for all a /∈ A∗.

Numerical experiments

∗ Bernoulli scenario (left figure). Problem parameters: T = 104, K = 5, Ca(t)− 1 ∼ Poisson(a+ 1),
(µa, τa): (0.1, 0.2), (0.3, 0.2), (0.5, 0.4), (0.5, 0.6), (0.7, 0.8).

∗ Exponential scenario (right figure). Same parameters except for the µa’s and τa’s.
(µa, τa): (1, 1.1), (2, 1.9), (3, 3.1), (4, 3.9), (5, 5.1).
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∗ Interpretation: the best performing policies are those adapting to the parametric family of the re-
ward distributions: through the Kullback-Leibler divergence for kl-UCB-4P or through prior distributions
for Bayes-UCB-4P and TS-4P.

References

• Garivier, A. and Cappé, O. The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond.
Conference On Learning Theory, 2011.

• Kaufmann, E. On Bayesian index policies for sequential resource allocation. Annals of Statistics, 2017.

• Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 1933.

• Korda, N. and Kaufmann, E. and Munos, R. Thompson sampling for 1-dimensional exponential family
bandits. Advances in Neural Information Processing Systems, 2013.


