Ranking and Risk-Aware Reinforcement Learning

PhD Defense

Mastane Achab

Télécom Paris, LTCI, Palaiseau

July 10, 2020

École doctorale de mathématiques Hadamard (EDMH)

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning
- 2 Beyond Ranking Aggregation
 - Dimensionality Reduction on Permutations
 - Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Agenda

• Offline Minimization of the Empirical Risk

(Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Empirical Risk Minimization (ERM)

Many ML problems belong to the ERM paradigm [Devroye et al., 1996].

What we really want ...

• Minimize the *true risk*:

$$\theta^* \in \operatorname*{argmin}_{\theta \in \Theta} \mathscr{R}_P(\theta) := \mathbb{E}_{Z \sim P} \left[\ell(\theta, Z) \right].$$

• Example - Classification:
$$Z = (X, Y)$$
, $\theta =$ "classifier".

What we can compute ...

• Minimize the *empirical risk*:

$$\widehat{\theta}_n \in \underset{\theta \in \Theta}{\operatorname{argmin}} \widehat{\mathscr{R}}_P(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta, Z_i).$$

• Training dataset: *n* independent observations $Z_i \sim P$.

Classification vs. Ranking

Binary classification and *bipartite ranking* ([Agarwal et al., 2005]) are two ERM problems with the same type of supervised data:

$$(X_1, Y_1), \dots, (X_n, Y_n)$$
, valued in $\mathscr{X} \times \{-1, +1\}$.

The optimal elements $\theta^* \in \Theta$ are given by the posterior probability $\eta(x) = \mathbb{P}\{Y = +1 | X = x\}.$

Binary classification: answer to " $\eta(x) > 0.5$?" for all x

•
$$\theta = \text{classifier } g : \mathscr{X} \to \{-1, +1\}$$

• Zero-one loss function: $\ell_{0/1}(g,(x,y)) = \mathbb{I}\{g(x) \neq y\}$

Bipartite ranking: answer to " $\eta(x) > \eta(x')$?" for all x, x'

- $\theta = \text{scoring function } s : \mathscr{X} \to \mathbb{R}$
- Maximize the empirical $AUC(s) = \mathbb{P}\{s(X) < s(X') | Y = -1, Y' = +1\}$:

$$\widehat{AUC}_{n}(s) = \frac{1}{n_{+} \cdot n_{-}} \sum_{i: Y_{i} = -1} \sum_{j: Y_{j} = +1} \mathbb{I}\left\{s(X_{i}) < s(X_{j})\right\}.$$

Mastane Achab

PhD Defense

Many Rankings for Many Labels

- Bipartite ranking: $Y \in \{\mathcal{O}, \mathbb{Q}\}$
- Multipartite ranking [Rajaram and Agarwal, 2005], [S. Clémençon and Vayatis, 2013]: Y ∈ {1★,...,5★}

Continuous ranking [Clémençon and Achab, 2017]: $Y \in [0, 1]$

• Application to implicit feedback [Radlinski and Joachims, 2005]:

$$Y = \frac{\text{listening time of song } X \text{ until skip}}{\text{total duration of song } X} \in [0, 1].$$

- For threshold y: binary subproblem with $Z_y = 2\mathbb{I}\{Y > y\} 1$.
- Continuum of binary subproblems: $IROC(s) = \int_{y=0}^{1} ROC_y(s) dF_Y(y)$, and $IAUC(s) = \int_{y=0}^{1} AUC_y(s) dF_Y(y)$.
- Empirical maximization of \widehat{IAUC}_n .

Ranking From Rankings $\sigma_1: \quad \textcircled{3} < \quad \textcircled{4} < \quad \textcircled{3} < \quad \end{array}{3} < \quad \textcircled{3} < \quad \textcircled{3} < \quad \textcircled{3} < \quad \end{array}{3} < \quad \textcircled{3} < \quad \textcircled{3} < \quad \end{array}{3} < \quad \r{3} <$

Ranking Aggregation [Korba et al., 2017]

Summarize a distribution P on the set of permutations \mathfrak{S}_N by a single consensus/median ranking σ^* :

$$\sigma^* = \operatorname*{argmin}_{\sigma \in \mathfrak{S}_N} \mathcal{L}_P(\sigma) := \mathbb{E}[d_\tau(\sigma, \Sigma)] = \sum_{\sigma(i) < \sigma(j)} p_{j,i},$$

with Kendall's tau distance:

$$d_{\tau}(\sigma,\sigma') = \sum_{1 \leq i < j \leq N} \mathbb{I}\left\{ (\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0 \right\},$$

and pairwise probabilities $p_{i,j} = \mathbb{P}_{\Sigma \sim P} \{ \Sigma(i) < \Sigma(j) \}.$

Extension to Partial Orders

Definition (Bucket Order)

It is an ordered partition $\mathscr{C} = (\mathscr{C}_1, \dots, \mathscr{C}_K)$ of the N items $\{1, \dots, N\}$.

Figure : This bucket order constrains football teams to be preferred over hockey's. It has size K = 2 and shape $\lambda = (4, 2)$.

Learning bucket orders by ERM [Achab et al., 2018b]

Find the bucket order \mathscr{C}^* (of given size K and shape λ) with minimal distortion measure:

$$\mathscr{C}^* = \operatorname*{argmin}_{\mathscr{C} \in \mathsf{C}_{K,\lambda}} \Lambda_P(\mathscr{C}) := \min_{P' \in \mathsf{P}_{\mathscr{C}}} W_{d_{\tau},1}(P,P') = \sum_{1 \le k < l \le K} \sum_{(i,j) \in \mathscr{C}_k \times \mathscr{C}_l} p_{j,i}.$$

1st Relaxation of ERM: Biased Data

Question: What if the training dataset $\{Z'_1, ..., Z'_n\}$ is i.i.d. sampled from P' (training distrib.) $\neq P$ (testing distrib.) ?

Examples of Sample Selection Bias

- censored data [Kaplan and Meier, 1958]
- Positive-Unlabeled learning [du Plessis et al., 2014]
- varying class probabilities, stratified data [Bekker and Davis, 2018]

Weighted ERM (WERM) [Vogel, Achab, et al., 2020] Minimize the *weighted empirical risk*:

$$\widetilde{\theta}_n \in \underset{\theta \in \Theta}{\operatorname{argmin}} \widetilde{\mathscr{R}}_{P'}(\theta) := \frac{1}{n} \sum_{i=1}^n \underbrace{\widehat{\Phi}(Z'_i)}_{\approx \frac{dP}{dP'}(Z'_i)} \cdot \ell(\theta, Z'_i).$$

In *online learning*, the training data is collected through time, depending on the learner's decisions:

- *active learning* [Minsker, 2012], [Locatelli et al., 2017]: faster convergence rates than offline ERM,
- multi-armed bandits (MAB) [Bubeck et al., 2012],
- reinforcement learning (RL) [Sutton and Barto, 2018].

Agenda

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

The Casino Dilemma

Stochastic Multi-Armed Bandit (MAB)

At each time $t \in \{1, \ldots, T\}$,

- pull an arm $A_t \in \{1, ..., K\}$,
- receive reward $X_{A_t,t} \sim v_{A_t}$.

Minimize the *regret*: $R_T = \sum_{a=1}^{K} \mathbb{E}[N_a(T)] \cdot (\mu_{a^*} - \mu_a).$

Cautious Bandits

Risk-sensitive MAB

Mean reward $\mu_a = \mathbb{E}[v_a]$ replaced by alternative risk-measures such as:

- quantiles in [Szorenyi et al., 2015],
- the CVaR in [Galichet et al., 2013] and [Kolla et al., 2019],
- a mean-variance tradeoff in [Sani et al., 2012], generalized in [Maillard, 2013].

In environmental or financial applications, *extreme rewards* are sometimes more relevant than mean values [Beirlant et al., 2006].

Max K-Armed Bandits [Cicirello and Smith, 2005]

- Maximize: $\mathbb{E}[\max_{1 \le t \le T} X_{A_t,t}].$
- ... or equivalently, *minimize the extreme regret*:

$$R_{T} = \max_{1 \le a \le K} \mathbb{E} \left[\max_{1 \le t \le T} X_{a,t} \right] - \mathbb{E} \left[\max_{1 \le t \le T} X_{A_{t},t} \right]$$

Max K-Armed Bandits for Pareto Tails

Max K-armed bandits for Pareto-like distributions in [Carpentier and Valko, 2014].

Contributions in [Achab et al., 2017]

- "Explore-Then-Commit" (ETC) variant of ExtremeHunter ([Carpentier and Valko, 2014]).
- For both ExtremeHunter and ExtremeETC: refined extreme regret analysis + tight lower bound.
- Reduction to MAB by truncating the rewards: $X_{\text{truncated}} = X \cdot \mathbb{I}\{X > u\}$.

Learning Distributions in a Dynamic Environment

Question: Why not learning the whole distribution, instead of just a risk-sensitive measure?

 \rightarrow Distributional reinforcement learning (DRL) [Bellemare et al., 2017].

The MDP Model of RL

Markov decision process (MDP)

A Markov decision process (MDP) is described by a tuple $(\mathcal{X}, \mathcal{A}, P, R)$

- countable state space \mathscr{X} ,
- countable action space A,
- transition kernel $P: \mathscr{X} \times \mathscr{A} \to \mathscr{P}(\mathscr{X})$,
- distributional reward function $R : \mathscr{X} \times \mathscr{A} \to \mathscr{P}(\mathbb{R})$.

Figure : Example of MDP with deterministic rewards: $R(x, a) = \delta_{r(x, a)}$.

- IV	lastane	Acr	iab
	abeance		

Average Performance of a Policy

Distributional Discounted Return

For a discount factor $\gamma \in [0,1)$, the distributional discounted return $Z^{\pi}(x,a)$ of a policy π is the *probability distribution* of:

$$\sum_{t=0}^{\infty} \gamma^t R_t \text{ given that } X_0 = x, A_0 = a,$$

and for all $t \in \mathbb{N}$, $R_t \sim R(X_t, A_t)$, $X_{t+1} \sim P(\cdot|X_t, A_t)$, $A_{t+1} \sim \pi(\cdot|X_{t+1})$.

How good (in expectation) is a policy π ?

State-Action Value Function: for all $(x, a) \in \mathscr{X} \times \mathscr{A}$,

$$Q^{\pi}(x,a) = \mathbb{E}_{Z_0 \sim Z^{\pi}(x,a)}[Z_0] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t \mid X_0 = x, A_0 = a, \pi\right]$$

An Atomic Extension of Bellman's Equations

Atomic Bellman Equations (Chap. VII)

- The N≥1 atoms Θ₁^π(x, a),...,Θ_N^π(x, a) are "conditional expectations" summarizing the distribution Z^π(x, a).
- They verify: for all x, a, for all $1 \le i \le N$,

$$\Theta_i^{\pi}(x, a) = \operatorname{Function}\left(\left\{\Theta_j^{\pi}(x', a') : x', a', j\right\}\right).$$

• — Atomic temporal difference algorithm.

Agenda

Introduction

- Offline Minimization of the Empirical Risk (Online) Reinforcement Learning
- Beyond Ranking Aggregation
 - Dimensionality Reduction on Permutations
 - Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- I-Step Operators
- Atomic Bellman Equations

Perspectives

Bucket Ranking

Bucket Order

A bucket order $\mathscr{C} = (\mathscr{C}_1, \dots, \mathscr{C}_K)$ is an ordered partition of $\{1, \dots, N\}$:

• \mathcal{C}_k 's disjoint non empty subsets of $\{1, \dots, N\}$

•
$$\bigcup_{k=1}^{K} \mathscr{C}_k = \{1, \dots, N\}$$

 \mathscr{C} is described by its size K, and its shape $\lambda = (\#\mathscr{C}_1, ..., \#\mathscr{C}_K)$.

Question: How much does P violate the constraints of \mathscr{C} ?

$$\longrightarrow \text{Distortion:} \quad \Lambda_P(\mathscr{C}) = \min_{P' \in \mathbf{P}_{\mathscr{C}}} W_{d_\tau,1}(P,P') = \sum_{1 \le k < l \le K} \sum_{(i,j) \in \mathscr{C}_k \times \mathscr{C}_l} p_{j,i},$$

where any $P' \in \mathbf{P}_{\mathscr{C}}$ is described by $d_{\mathscr{C}} = \prod_{1 \le k \le K} \# \mathscr{C}_k! - 1 \le N! - 1$ parameters $(d_{\mathscr{C}}$ is the *dimensionality* of $\mathbf{P}_{\mathscr{C}}$).

Dimension-Distortion Tradeoff

The smaller the dimension, the larger the distortion ...

Figure : Dimension-Distortion plot for different bucket sizes on real-world preference datasets.

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Learning Buckets From Pairwise Comparisons

ERM Setting

Training sample: $\Sigma_1, \ldots, \Sigma_n$ i.i.d. from *P*.

• Empirical pairwise probabilities:

$$\widehat{p}_{i,j} = \frac{1}{n} \sum_{s=1}^{n} \mathbb{I}\{\Sigma_s(i) < \Sigma_s(j)\}.$$

• Empirical distortion of any bucket order \mathscr{C} :

$$\widehat{\Lambda}_{n}(\mathscr{C}) = \Lambda_{\widehat{P}_{n}}(\mathscr{C}) = \sum_{1 \le k < l \le K} \sum_{(i,j) \in \mathscr{C}_{k} \times \mathscr{C}_{l}} \widehat{p}_{j,i}.$$
(1)

• Remark: Alternatively, observe only pairwise comparisons.

Excess of Distortion for Given Shape

Empirical distortion minimizer $\widehat{C}_{\mathcal{K},\lambda}$ is solution of:

 $\min_{\mathscr{C}\in \mathbf{C}_{\mathcal{K},\lambda}}\widehat{\Lambda}_n(\mathscr{C}),$

where $C_{K,\lambda}$ set of bucket orders \mathscr{C} of size K and shape λ (i.e. $\#\mathscr{C}_k = \lambda_k$ for all $1 \le k \le K$).

Theorem 1 in [Achab et al., 2018b]

For all $\delta \in (0,1)$, we have with probability at least $1-\delta$:

$$\Lambda_{P}(\widehat{C}_{K,\lambda}) - \inf_{\mathscr{C} \in \mathbf{C}_{K,\lambda}} \Lambda_{P}(\mathscr{C}) \leq \beta(N,\lambda) \times \sqrt{\frac{\log(\frac{1}{\delta})}{n}}$$

Balancing Dimension & Distortion

BuMeRank Algorithm

• Start with ranking aggregation:

 $\mathscr{C}(0) = (\{\sigma_P^{*-1}(1)\}, \dots, \{\sigma_P^{*-1}(N)\}), \text{ dimension } d_{\mathscr{C}(0)} = 0.$

• For step $j \ge 0$, merge two adjacent cells:

 $\mathscr{C}(j+1) = (\mathscr{C}_1(j), \dots, \mathscr{C}_{k-1}(j), \mathscr{C}_k(j) \cup \mathscr{C}_{k+1}(j), \mathscr{C}_{k+2}(j), \dots, \mathscr{C}_K(j)).$

• The agglomerative stage $\mathscr{C}(j) \rightarrow \mathscr{C}(j+1)$ increases the dimension:

$$d_{\mathscr{C}(j+1)} = (d_{\mathscr{C}(j)} + 1) \times \begin{pmatrix} \# \mathscr{C}_k(j) + \# \mathscr{C}_{k+1}(j) \\ \# \mathscr{C}_k(j) \end{pmatrix} - 1,$$

• while reducing the distortion by: $\Lambda_P(\mathscr{C}(j)) - \Lambda_P(\mathscr{C}(j+1)) = \sum_{i \in \mathscr{C}_k(j), j \in \mathscr{C}_{k+1}(j)} p_{j,i}.$

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Credit Risk Management

Model: The population (of credit applicants) is stratified over $K \ge 1$ categories.

Iterations

At each time $1 \le t \le T$,

- a client of each category $a \in \{1, ..., K\}$ asks for a credit of amount τ_a ,
- the bank chooses a subset $\mathscr{A}_t \subseteq \{1, \dots, K\}$, and pays τ_a for each chosen category $a \in \mathscr{A}_t$,
- then, the bank receives the corresponding reimbursements: $X_{a,t} = (1 + \rho_a)\tau_a \cdot B_{a,t}$ with Bernoulli r.v. $B_{a,t} \sim \mathscr{B}(p_a)$.

Reimbursement ... or credit default!

- In case of credit default: $B_{a,t} = 0 \Longrightarrow X_{a,t} = 0$ (no refunding!).
- Otherwise, $B_{a,t} = 1$, i.e. the bank gets refunded $(1 + \rho_a)\tau_a$.
- Category *a* is "profitable" if: $\mathbb{E}[X_{a,t}] > \tau_a \iff p_a > \frac{1}{1+\rho_a}$.

Make Profit, Not Reward

Profitable Bandits [Achab et al., 2018a]

At each time $t \in \{1, \ldots, T\}$,

- pull a subset of arms $\mathscr{A}_t \subseteq \{1, \dots, K\}$,
- for all pulled arms $a \in \mathcal{A}_t$,
 - **pay (known) price** τ_a (e.g. loan financed by a bank),
 - receive reward $X_{a,t} \sim v_a$ (loan reimbursement + interest ... or default!).

Maximize expected profits: $\mathbb{E}\left[\sum_{t=1}^{T}\sum_{a \in \mathscr{A}_{t}}(X_{a,t}-\tau_{a})\right]$.

Here, the regret is:

$$R_{T} = \sum_{a \in \mathscr{A}^{*}} \Delta_{a} \cdot (T - \mathbb{E}[N_{a}(T)]) - \sum_{a \notin \mathscr{A}^{*}} \Delta_{a} \cdot \mathbb{E}[N_{a}(T)],$$

with (unknown) expected profit $\Delta_a = \mu_a - \tau_a$, and set of profitable arms:

$$\mathscr{A}^* = \Big\{ a \in \{1, \ldots, K\} : \Delta_a > 0 \Big\}.$$

$R_T \gtrsim Constant \times \log T$

Lower Bound: Theorem 1 in [Achab et al., 2018a]

Any *uniformly efficient* profitable bandits strategy produces a regret R_T asymptotically lower bounded as follows:

$$\liminf_{T \to \infty} \frac{R_T}{\log T} \ge \sum_{a \notin \mathscr{A}^*} \frac{|\Delta_a|}{\mathcal{K}_{\inf}(v_a, \tau_a, \mathscr{D}_a)},$$

where $\mathscr{K}_{inf}(v_a, x, \mathscr{D}_a) = \inf \left\{ \mathsf{KL}(v_a, v'_a) : v'_a \in \mathscr{D}_a \text{ and } \mathbb{E}_{X' \sim v'_a}[X'] > x \right\}.$

Pull Arm If Index Above Threshold

Algorithm 1 Profitable bandits index policy

Require: time horizon T, thresholds $(\tau_a)_{a \in \{1,...,K\}}$.

- 1: Initialize: Pull all arms: $\mathscr{A}_1 = \{1, \dots, K\}$.
- 2: for t = 1 to T 1 do
- 3: Compute index $u_a(t)$ for all arms $a \in \{1, ..., K\}$.
- 4: Pull arms in $\mathscr{A}_{t+1} = \{a \in \{1, \dots, K\} : u_a(t) \ge \tau_a\}.$

5: end for

Asymptotically optimal algorithms $(R_T \lesssim \sum_{a \notin \mathscr{A}^*} \frac{|\Delta_a|}{\mathcal{K}_{inf}(v_a, \tau_a, \mathscr{D}_a)} \log T)$:

• the kl-UCB index [Garivier and Cappé, 2011]:

$$u_a(t) = \sup \Big\{ q > \widehat{\mu}_a(t) : N_a(t) d(\widehat{\mu}_a(t), q) \le \log t + c \log \log t \Big\},$$

• the Bayes-UCB index [Kaufmann et al., 2012]:

$$u_a(t) = Q(1-1/(t(\log t)^c), \pi_{a,t}),$$

• the Thompson Sampling index [Thompson, 1933]: $u_a(t) = \mu(\theta_a(t))$.

Experiment - Profitable Bandits

Figure : Regret as a function of time in the Bernoulli scenario.

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

4 Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Small Tail Index α Means "Heavy-Tailed"

Definition (2nd-order Pareto Distributions)

It is a distribution with c.d.f. F that satisfies: $\forall x \ge 0$,

$$|1-Cx^{-\alpha}-F(x)| \le C'x^{-\alpha(1+\beta)}.$$

Assumptions [Carpentier and Valko, 2014]

• The distributions v_1, \ldots, v_K of the K arms are 2nd-order Pareto.

• tail index
$$\alpha_a > 1$$
 (finite mean),

 $\beta_a \ge b > 0.$

Property

For T large enough, the optimal arm has the smallest tail index:

$$a^* = \underset{1 \le a \le K}{\operatorname{argmin}} \alpha_a = \underset{1 \le a \le K}{\operatorname{argmax}} \mathbb{E} \left[\max_{1 \le t \le T} X_{a,t} \right].$$

On the Hunt of Extremes

ExtremeHunter [Carpentier and Valko, 2014]

- Main idea: UCB for $\widehat{1/\alpha_a}$.
- Upper bound for the extreme regret: $R_T = O\left(T^{\frac{1}{(1+b)\alpha_{a^*}}}\right)$.

Our contribution [Achab et al., 2017]

• Refined upper bound for ExtremeHunter and ExtremeETC:

$$R_T = O\left(\log(T)^{\frac{2(2b+1)}{b}} \cdot T^{-\left(1 - \frac{1}{\alpha_{a^*}}\right)} + T^{-\left(b - \frac{1}{\alpha_{a^*}}\right)}\right)$$

• Lower bound (tight if $b \ge 1$):

$$R_{T} = \Omega\left(\log(T)^{\frac{2(2b+1)}{b}} \cdot T^{-\left(1-\frac{1}{\alpha_{a^{*}}}\right)}\right)$$

Reduction to MAB with Truncated Rewards

Figure : Expected truncated rewards $\mathbb{E}[X_a \mathbb{I}\{X_a > u\}]$ as a function of threshold u.

• Lemma 6 in [Achab et al., 2017]: For threshold *u* large enough,

$$a^* = \underset{1 \le a \le K}{\operatorname{argmin}} \alpha_a = \underset{1 \le a \le K}{\operatorname{argmax}} \mathbb{E}[X_a \cdot \mathbb{I}\{X_a > u\}].$$

Mastane Achab

Truncating vs. ExtremeETC

Figure : Extreme regret across time for different strategies.

Mastane Achab

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Distributional Bellman Operators

Question: Do we know DRL operators that are contractions?

Yes, for distributional policy evaluation [Bellemare et al., 2017]

• The distributional Bellman operator \mathcal{T}^{π} : for any $Z: \mathcal{X} \times \mathcal{A} \to \mathscr{P}(\mathbb{R})$,

 $\mathcal{T}^{\pi}Z(x,a) = \text{Distrib}(R_0 + \gamma Z_1) \text{ with } R_0 \sim R(x,a), Z_1 \sim Z(X_1,A_1).$

- Lemma 3 in [Bellemare et al., 2017]: *T^π* is a γ-contraction in sup-Wasserstein distance W_p.
- Distributional Bellman equation: $Z^{\pi} = \mathcal{T}^{\pi} Z^{\pi}$.

... and for distributional control?

The answer is "No" in Proposition 1 in [Bellemare et al., 2017].

1-Step Distributional Bellman Operators (1/2)

Our contribution: We introduce 2 new DRL operators (1 for policy evaluation & 1 for control), that are both contractions.

Distributional policy evalutation

• The 1-Step Distributional Bellman Operator \mathbb{T}^{π} :

$$\mathbb{T}^{\pi}Z(x,a) = \text{Distrib}(R_0 + \gamma \mathbb{E}[Z_1 | X_1, A_1]),$$

where $R_0 \sim R(x, a), X_1 \sim P(\cdot|x, a), A_1 \sim \pi(\cdot|X_1), Z_1 \sim Z(X_1, A_1).$

- Lemma 1 in Chap. VII: \mathbb{T}^{π} is a γ -contraction in \widetilde{W}_{p} .
- If deterministic rewards $R(x, a) = \delta_{r(x,a)}$, fixed point of \mathbb{T}^{π} :

$$(x,a) \mapsto \sum_{(\mathbf{x}',\mathbf{a}') \in \mathscr{X} \times \mathscr{A}} P(\mathbf{x}'|x,a) \pi(\mathbf{a}'|\mathbf{x}') \delta_{r(x,a)+\gamma Q^{\pi}(\mathbf{x}',\mathbf{a}')}.$$

1-Step Distributional Bellman Operators (2/2)

... and our new DRL operator for control is ...

Distributional control

• The 1-Step Distributional Bellman Optimality Operator \mathbb{T} : for all $Z: \mathscr{X} \times \mathscr{A} \to \mathscr{P}(\mathbb{R})$,

$$\mathbb{T}Z(x,a) = \text{Distrib}(R_0 + \gamma \max_{a' \in \mathscr{A}} \mathbb{E}[Z_{1,a'} | X_1]),$$

where
$$R_0 \sim R(x, a), X_1 \sim P(\cdot | x, a), Z_{1,a'} \sim Z(X_1, a').$$

- Lemma 2 in Chap. VII: \mathbb{T} is a γ -contraction in W_p .
- If $R(x,a) = \delta_{r(x,a)}$, fixed point of \mathbb{T} :

$$(x,a) \mapsto \sum_{\mathbf{x}' \in \mathscr{X}} P(\mathbf{x}'|x,a) \delta_{r(x,a)+\gamma \max_{a'} Q^*(\mathbf{x}',a')}$$

Agenda

Introduction

- Offline Minimization of the Empirical Risk
- (Online) Reinforcement Learning

Beyond Ranking Aggregation

- Dimensionality Reduction on Permutations
- Learning Bucket Orders

Risk-Aware Bandits

- Bandits for Credit Risk
- Extreme Bandits Revisited

4 Distributional Reinforcement Learning

- 1-Step Operators
- Atomic Bellman Equations

Perspectives

Projected Bellman Operators

Let's now focus on the (full) distributional Bellman operator \mathcal{T}^{π} ... Question: In practice, how to (approximately) compute \mathcal{T}^{π} ?

Quantile regression approach in [Dabney et al., 2018]

• Projected Bellman operator $\Pi_{1,N} \circ \mathcal{T}^{\pi}$, with W_1 -projection $\Pi_{1,N}$:

$$\Pi_{1,N}Z(x,a) = \frac{1}{N}\sum_{i=1}^{N}\delta_{\Theta_i(x,a)}, \text{ with } \Theta_i(x,a) = F_{x,a}^{-1}\left(\frac{2i-1}{2N}\right).$$

• Prop. 2 in [Dabney et al., 2018]: $\Pi_{1,N} \circ \mathcal{T}^{\pi}$ is a γ -contraction in \widetilde{W}_{∞} .

Our approach: W_2 -projection $\Pi_{2,N}$

- The W_2 -optimal atoms are trimmed means: $\Theta_i(x, a) = N \int_{\tau=\frac{i-1}{N}}^{\frac{i}{N}} F_{x,a}^{-1}(\tau) d\tau \approx \mathbb{E} \left[Z_0 \middle| F_{x,a}^{-1}\left(\frac{i-1}{N}\right) \le Z_0 \le F_{x,a}^{-1}\left(\frac{i}{N}\right) \right].$
- Corollary 1 in Chap. VII: $\Pi_{2,N} \circ \mathcal{T}^{\pi}$ is a γ -contraction in \widetilde{W}_{∞} .

Atomic Bellman Equation

• Proposition 2 in Chap. VII: For determinisic rewards $R(x,a) = \delta_{r(x,a)}$, the fixed point $Z_{\Theta^{\pi}}$ of the *atomic Bellman operator* $\Pi_{2,N} \circ \mathcal{T}^{\pi}$ solves the *atomic Bellman equation*: for all $x, a, 1 \le i \le N$,

$$\Theta_i^{\pi}(x,a) = r(x,a) + \gamma N \sum_{x',a',j} \mu_i^{\pi}(\Theta^{\pi},x,a,\Theta_j^{\pi}(x',a')) \cdot \Theta_j^{\pi}(x',a'),$$

• with "quantile level coefficients":

$$\mu_i^{\pi}(\Theta^{\pi}, x, a, \theta) = \text{Length}\left(\left[\frac{i-1}{N}, \frac{i}{N}\right] \bigcap \left[H_{x,a}^{\pi}(\theta), G_{x,a}^{\pi}(\theta)\right]\right),$$

• where $H_{x,a}^{\pi}(\theta) = G_{x,a}^{\pi}(\theta-)$ and $G_{x,a}^{\pi}$ is the c.d.f. of $Z_{\Theta^{\pi}}(X_1, A_1)$:

$$G_{x,a}^{\pi}(\theta) = \sum_{x',a'} P(x'|x,a)\pi(a'|x') \cdot \frac{1}{N} \sum_{j=1}^{N} \mathbb{I}\{\Theta_j^{\pi}(x',a') \leq \theta\}.$$

Atomic Dynamic Programming

Given known transition probabilities $P(\cdot|x,a)$, we recursively apply the atomic Bellman operator.

Figure : $\pi(a_1|x) \equiv 1$, $Z^{\pi}(x_1, a_1) = \text{Uniform}([0, 1])$, $Z^{\pi}(x_2, a_1) = \text{Uniform}([1, 2])$.

Mastane Achab

Atomic Approximation Error

How far is the atomic fixed point $Z_{\Theta^{\pi}}$ to the original fixed point Z^{π} ?

 W_{∞} -Approximation Error (Proposition 1 in Chap. VII)

 $\sup_{x,a} W_{\infty}(Z^{\pi}(x,a), Z_{\Theta^{\pi}}(x,a)) = O\left(\frac{1}{N}\right)$

Figure : $W_{\infty}(Z^{\pi}(x,a_1), Z_{\Theta^{\pi}}(x,a_1))$ for the two states $x \in \{x_1, x_2\}$.

Atomic Temporal Difference

Consider a policy π and a single transition $x, a, r(x, a), X_1, A_1$ such that $X_1 \sim P(\cdot|x, a), A_1 \sim \pi(\cdot|X_1)$.

Atomic Temporal-Difference (ATD)
For all
$$x' \in \mathscr{X}$$
, $a' \in \mathscr{A}$, $j \in \{1, ..., N\}$,
(a) $\theta \leftarrow \Theta_j(x', a')$,
(b) $G_{x,a}(\theta) \leftarrow (1 - \beta) G_{x,a}(\theta) + \beta \cdot \frac{1}{N} \sum_{k=1}^{N} \mathbb{I}\{\Theta_k(X_1, A_1) \le \theta\}$,
(c) $H_{x,a}(\theta) \leftarrow (1 - \beta) H_{x,a}(\theta) + \beta \cdot \frac{1}{N} \sum_{k=1}^{N} \mathbb{I}\{\Theta_k(X_1, A_1) < \theta\}$,
(d) $\forall 1 \le i \le N$, $\mu_i(\Theta, x, a, \theta) \leftarrow \text{Length}\left(\left[\frac{i-1}{N}, \frac{i}{N}\right] \cap [H_{x,a}(\theta), G_{x,a}(\theta)]\right)$.
Then, return the updated atoms in state-action (x, a) : for $1 \le i \le N$,

$$\Theta_{i}(x,a) \leftarrow (1-\alpha)\Theta_{i}(x,a) + \alpha \Big(r(x,a) + \gamma N \sum_{\theta} \mu_{i}(\Theta, x, a, \theta) \cdot \theta \Big).$$

Experiment - Atomic TD

Figure : ATD with learning rates $\alpha = \beta = 0.1$.

Perspectives

• Bucket ranking with Spearman ρ : $d_2(\sigma, \sigma') = \sqrt{\sum_{i=1}^{N} (\sigma(i) - \sigma'(i))^2}$. Proposition 16 in [Achab et al., 2018b]: alternative distortion measure $\Lambda'_P(\mathscr{C}) = \min_{P' \in \mathbf{P}_{\mathscr{C}}} W_{d_2,2}(P, P')$, whose explicit expression involves the triplet-wise proabilities:

$$p_{i,j,k} = \mathbb{P}_{\Sigma \sim P} \Big\{ \Sigma(i) < \Sigma(j) < \Sigma(k) \Big\}.$$

- Atomic TD with function approximation for the c.d.f.'s $H_{x,a}(\theta)$ and $G_{x,a}(\theta)$.
- Also, Atomic Q-learning (Chap. VII) by projecting the 1-step distributional Bellman optimality operator.

Achab, M., Clémençon, S., and Garivier, A. (2018a). Profitable bandits.

arXiv preprint arXiv:1805.02908.

Achab, M., Clémençon, S., Garivier, A., Sabourin, A., and Vernade, C. (2017).

Max k-armed bandit: On the extremehunter algorithm and beyond. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 389–404. Springer.

Achab, M., Korba, A., and Clémençon, S. (2018b). Dimensionality reduction and (bucket) ranking: a mass transportation approach.

Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., and Roth, D. (2005).
 Generalization bounds for the area under the ROC curve.
 J. Mach. Learn. Res., 6:393–425.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. L. (2006). *Statistics of extremes: theory and applications.*

Mastane Achab

PhD Defense

John Wiley & Sons.

Bekker, J. and Davis, J. (2018).

Beyond the selected completely at random assumption for learning from positive and unlabeled data.

CoRR, abs/1809.03207.

Bellemare, M. G., Dabney, W., and Munos, R. (2017).
A distributional perspective on reinforcement learning.
In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pages 449–458. JMLR. org.

Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit problems.

Foundations and Trends \bigcirc in Machine Learning, 5(1):1–122.

Carpentier, A. and Valko, M. (2014).

Extreme bandits.

In Advances in Neural Information Processing Systems 27, pages 1089–1097. Curran Associates, Inc.

Cicirello, V. A. and Smith, S. F. (2005).

The max k-armed bandit: A new model of exploration applied to search heuristic selection.

In *The Proceedings of the Twentieth National Conference on Artificial Intelligence*, volume 3, pages 1355–1361. AAAI Press.

Clémençon, S. and Achab, M. (2017).

Ranking data with continuous labels through oriented recursive partitions.

In *Advances in Neural Information Processing Systems*, pages 4600–4608.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2018).
 Distributional reinforcement learning with quantile regression.
 In *Thirty-Second AAAI Conference on Artificial Intelligence*.

Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2014).

Analysis of learning from positive and unlabeled data. In NIPS, pages 703–711.

- Galichet, N., Sebag, M., and Teytaud, O. (2013). Exploration vs exploitation vs safety: Risk-aware multi-armed bandits. In *Asian Conference on Machine Learning*, pages 245–260.
- Garivier, A. and Cappé, O. (2011). The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond. *ArXiv e-prints*.
- Kaplan, E. L. and Meier, P. (1958).
 Nonparametric estimation from incomplete observations.
 Journal of the American statistical association, 53(282):457–481.
- Kaufmann, E., Cappé, O., and Garivier, A. (2012).
 On bayesian upper confidence bounds for bandit problems.

In Artificial intelligence and statistics, pages 592-600.

Kolla, R. K., Jagannathan, K., et al. (2019). Risk-aware multi-armed bandits using conditional value-at-risk. *arXiv preprint arXiv:1901.00997*.

Mastane Achab

Korba, A., Clémençon, S., and Sibony, E. (2017).
 A learning theory of ranking aggregation.
 In *Proceeding of AISTATS 2017*.

Maillard, O.-A. (2013).

Robust risk-averse stochastic multi-armed bandits. In *International Conference on Algorithmic Learning Theory*, pages 218–233. Springer.

📔 Minsker, S. (2012).

Plug-in approach to active learning. The Journal of Machine Learning Research, 13(1):67–90.

 Radlinski, F. and Joachims, T. (2005).
 Query chains: learning to rank from implicit feedback.
 In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 239–248.

Mastane Achab

PhD Defense

- Rajaram, S. and Agarwal, S. (2005).
 Generalization bounds for k-partite ranking.
 In NIPS 2005 Workshop on Learn to rank.
- S. Clémençon, S. R. and Vayatis, N. (2013).
 Ranking data with ordinal labels: optimality and pairwise aggregation. *Machine Learning*, 91(1):67–104.
- Sani, A., Lazaric, A., and Munos, R. (2012).
 Risk-aversion in multi-armed bandits.
 In Advances in Neural Information Processing Systems, pages 3275–3283.
- Sutton, R. S. and Barto, A. G. (2018). *Reinforcement learning: An introduction*. MIT press.
- Szorenyi, B., Busa-Fekete, R., Weng, P., and Hüllermeier, E. (2015). Qualitative multi-armed bandits: A quantile-based approach.
 - Thompson, W. (1933).

On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.

Biometrika, 25(3/4):285-294.